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1 Overview

1.1 Publications

With full or partial support from Air Force STTR contract F49620-00-C-
0039, we produced (i) contributions to three books, (ii) six articles that
have been — or are slated to be — submitted to peer reviewed journals and
(iii) a software manual that will accompany the S+WAVELETS software.
The contributions to books are the following.

1. Wavelet Methods for Time Series Analysis, D. B. Percival and A T.
Walden (2000), Cambridge, England: Cambridge University Press.
The theory presented in this book formed the foundation for much
of the research and software developed for this contract. Topics in-
clude wavelet filter families; convolution style wavelet transforms in-
cluding the discrete wavelet transform, the maximal overlap discrete
wavelet transform, the discrete wavelet packer transform and the max-
imal overlap discrete wavelet packer transform; wavelet variance anal-
ysis; analysis and synthesis of long memory processes; wavelet-based
signal estimation; and wavelet analysis of finite energy signals.

2. ‘The Impact of Wavelet Coeflicient Correlations on Fractionally Differ-
enced Process Estimation’, P. F. Craigmile, D. B. Percival and P. Gut-
torp (2001), in European Congress of Mathematics (Barcelona, July
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10-14, 2000), Volume II, edited by C. Casacuberta, R. M. Mir6-Roig,
J. Verdera and S. Xambé-Descamps, Basel, Switzerland: Birkh&user
Verlag, pp. 591-9. Here we demonstate that, while the within-scale
nonboundary coefficients of the discrete wavelet transform of a frac-
tionally differenced process are approximately uncorrelated, the re-
maining weak correlation between these coefficients is well modeled
by a first or second order autoregressive (AR) process. This result
suggests an asymptotic approach for establishing consistency in var-
ious wavelet-based estimators in which the within scale correlations
are model by AR processes whose orders are allowed to grow as the
sample size becomes infinite.

3. ‘Wavelet-Based Trend Detection and Estimation’, P. F. Craigmile and
D. B. Percival (2002), in Encyclopedia of Environmetrics (Volume 4),
edited by A. H. El-Shaarawi and W. W. Piegorsch, Chichester, Eng-
land: John Wiley and Sons, pp. 2334-8. This peer-reviewed contribu-
tion is a review of the literature on wavelet-based trend detection and
estimation and summaries some of the work in two of our papers (see
items 5 and 6 below).

Here is a listing of the articles supported by this contract, along with a
synopsis and their publication/submission status.

1. ‘Inertial Range Determination for Aerothermal Turbulence using Frac-
tionally Differenced Processes and Wavelets’, W. Constantine, D .B.
Percival and P. G. Reinhall (2001), Physical Review E, 64(3) 036301,
12 pages. A fractionally differenced (FD) process is used to model
aerothermal turbulence data and the model parameters are estimated
via wavelet techniques. Theory and results are presented for three es-
timators of the FD parameter: an ‘instantaneous’ block independent
least squares estimator and block dependent weighted least squares
and maximum likelihood estimators. Confidence intervals are devel-
oped for the block dependent estimators. We show that for a majority
of the aerothermal turbulence data studied herein, there is a strong de-
parture from the theoretical Kolmogorov turbulence over finite ranges
of scale. A time-scale dependent inertial range statistic is developed
to quantify this departure.

2. ‘Simulating a Class of Stationary Gaussian Processes using the Davies-
Harte Algorithm, with Application to Long-Memory Processes’, P. F.




Craigmile (2002), Journal of Time Series Analysis, in press. This
article offers a proof that all stationary and invertible fractionally
differenced processes have a circulant embedding and hence can be
simulated efficiently and exactly using the Davies-Harte algorithm.

. ‘Exact Simulation of Time-Varying Fractionally Differenced Processes,’

D. B. Percival and W. L. B. Constantine (2002), Journal of Compu-
tational and Graphical Statistics, under review. Time-varying frac-
tionally differenced (TVFD) processes can serve as useful models for
certain time series whose statistical properties evolve over time. The
spectral density function for a TVFD process obeys a power law whose
exponent can be time dependent. In contrast to locally stationary
or locally self-similar processes, the power law exponent for a TVFD
process is not restricted to certain intervals, which is of practical im-
portance for modeling time series of, e.g., atmospheric turbulence. In
this paper we construct a uniform representation for Gaussian TVFD
processes that allows the power law exponent to evolve in an arbi-
trary manner. Even though this representation in general involves a
time-dependent linear combination of an infinite number of random
variables from a white noise process, we demonstrate that simulations
with exactly correct statistical properties can be achieved based upon
two well-known approaches, each of which involves a finite number
of white noise deviates. The first approach is based on a modified
Cholesky decomposition, and the second, on a circulant embedding.
Use of these exact methods will ensure that Monte Carlo studies of
the statistical properties of estimators for TVFD processes are not ad-
versely influenced by imperfections arising from the use of approximate
simulation methods.

. P. F. Craigmile and D. B. Percival (2002), ‘Asymptotic Decorrela-

tion of Between-Scale Wavelet Coefficients,” to be submitted to IEEE
Transactions on Information Theory by the end of October 2002.
One reason that the discrete wavelet transform (DWT) is useful for
analysing time series is that, for certain series, the wavelet coefficients
produced by the DWT are approximately uncorrelated; i.e., the DWT
reexpresses the random variables (RVs) describing a correlated time
series in terms of approximately uncorrelated RVs, which are much
easier to deal with statistically than the original series. This decorre-
lation property is a good approximation for time series arising from




processes such as a fractionally differenced (FD) process, fractional
Gaussian noise and fractional Brownian motion, but is not a decent
approximation for certain autoregressive (AR) and/or moving average
processes. The failure of the decorrelation property in these latter
cases is due to the fact that, within a certain scale, the wavelet coeffi-
cients need not be approximately uncorrelated. In this paper we prove
that, as the width L of the filter used to form the DWT increases,
the correlation between wavelet coefficients on different scales neces-
sarily decreases to zero for a very general class of stochastic processes,
namely, Gaussian processes with a spectral density function (SDF)
that can be expressed as the product of the SDF for an FD process
and any bounded SDF (the FD process need not be stationary, but can
be nonstationary with stationary backward differences). We demon-
state that this asymptotic result is a decent approximation for filter
widths used in practice by computing the maximum absolute between-
scale correlation for two processes, an FD process whose within-scale
coefficients are approximately uncorrelated, and an AR process whose
unit-scale coefficients exhibit substantial correlation. Our basic result
suggests a ‘two part’ strategy for establishing asymptotic statistical
results based upon the DWT. The first part is to let the filter width
L increase such that between-scale coefficients are decorrelated to a
certain quantifiable degree, and the second part is to explicitly model
the correlation structure of the coefficients with a given scale (this
strategy is used in the next two papers).

. P. F. Craigmile, P. Guttorp and D. B. Percival (2002), ‘Wavelet-Based

Parameter Estimation for Trend Contaminated Fractionally Differ-
enced Processes,’ to be submitted to IEEE Transactions on Signal
Processing in the Fall of 2002. One interesting aspect of DWTs that are
based upon the Daubechies class of wavelet filters of width L is that,
because the filter can be expressed as the convolution of a smoothing
filter and a difference filter of order L/2, the nonboundary DWT coef-
ficients for a time series are invariant upon addition of a polynomial of
order L/2 — 1. In this paper we consider time series that can be mod-
eled as the sum of an FD process and a polynomial trend and establish
a large sample theory for the estimation of the FD parameters under
the assumption of (i) a white noise model for the within-scale wavelet
coefficients and (i) a first order AR model for these coefficients. We
demonstrate that both large sample theories are decent approxima-




tions by comparing them to results from Monte Carlo experiments.
We compare our wavelet-based estimator for the FD parameters with
one proposed recently by Hurvich and Chen (2000) and find that our
estimator has considerably smaller mean square error. This work pro-
vides theoretical justification for the use of wavelet-based estimators
on time series that are potentially corrupted by a trend component (as
seems to be the case with certain aerothermal measurements).

. P. F. Craigmile, P. Guttorp and D. B. Percival (2002), ‘Trend Assess-

ment in a Long Memory Dependence Model using the Discrete Wavelet
Transform,’ to be submitted to Journal of Environmetrics upon com-
pletion. In this companion paper to the previous one, we consider
the properties of wavelet-based estimators of the trend component in
a time series consisting of the sum of a polynomial trend and an FD
process. The basic idea is that the DWT isolates the trend compo-
nent in the boundary wavelet coefficients and the scaling coefficients
(as discussed in the companion paper, the nonboundary wavelet coeffi-
cients can be used to estimate the FD parameters). We investigate the
statistical properties of the trend estimate and establish consistency
of the estimate under certain simple conditions. We provide pointwise
and simultaneous confidence intervals for the trend estimate. We also
consider a test for nonzero trend that is based upon evaluating the
expected power in the boundary wavelet coefficients and the scaling
coefficients under the null hypothesis of no trend. Our methodology
can be used to test for the presence of a trend component in time series
similar to aerothermal measurements.

The software manual is

o S+Wavelets 2.0 Manual, W. Constantine and D. B. Percival (2002),

Insightful Corporation.

The ‘beta’ version of this manual is attached at the end this final report as
Appendix A.

Updated information regarding these publications (along with other in-
formation about our project) is maintained at a Web site we have developed
at the National Simulation Resource Center, Department of Bioengineering,
University of Washington. The URL for this site is

http:/ /nsr.bioeng.washington.edu/STTR/AFSTTRHome.html




1.2 Invited Talks

We were invited to give two talks based upon our work on this contract.

1. “The Impact of Wavelet Coefficient Correlations on Fractionally Differ-
enced Process Estimation’, P. F. Craigmile, D. B. Percival and P. Gut-
torp, presented by Craigmile at the European Congress of Mathemat-
ics, Barcelona, Spain, July 12, 2000 (Andrew Walden, organizer). A
written version of this talk subsequently appeared in a book (see 1.1
above).

2. ‘Wavelet-Based Maximum Likelihood Estimation for Trend Contam-
inated Long Memory Processes,” P. F. Craigmile and D. B. Percival,
presented by Craigmile in a session on ‘Recent Developments in Time
Series Analysis’ at the 23"¢ European Meeting of Statisticians, Fun-
chal, Madeira, Portugal, August 16. 2001 (Jan Beran, organizer).

1.3 Software

As an important part of our contract with the Air Force in this phase II
STTR, the techniques (such as those described in the next section) were im-
plemented into a commercial grade software toolkit in the S-PLUS, MAT-
LAB, and C languages. We have developed a state-of-the-art software mod-
ule S4+WAVELETS written almost entirely in C (for speed and portability)
with wrapper functions to S-PLUS and MATLAB. The ‘beta’ version of
S+WAVELETS is scheduled for release in October 2002. After obtaining
feedback from our software testers, we will release and support a fully func-
tional commercial version of S+WAVELETS.

2 Accomplishments/New Findings

In this section we summarize our efforts in applying novel wavelet-based frac-
tionally differenced (FD) model parameter estimation techniques to aero-
thermal turbulence data. A more detailed discussion of these findings may
be found in our paper [CPRO1]. We also show our progress in forecast-
ing FD parameters using turbulence data and detail the progress made in
developing a commercial grade software toolkit for our sponsor.




2.1 Wavelet-based estimation for non-stationary multi-scale
fractal processes

Here we use a fractionally differenced (FD) process to model aerothermal
turbulence data and estimate the model parameters are via wavelet tech-
niques developed for this contract. Theory and results are presented for three
estimators of the FD parameter: an ‘instantaneous’ block independent least
squares estimator and block dependent weighted least squares and maxi-
mum likelihood estimators. Confidence intervals are developed for the block
dependent estimators. We show that for a majority of the aerothermal tur-
bulence data studied herein, there is a strong departure from the theoretical
Kolmogorov turbulence over finite ranges of scale. A time-scale dependent
inertial range statistic is developed to quantify this departure.

As in [KPC94, PSW98], we used wavelet techniques to analyze intermit-
tent deviations from Kolmogorov inertial subrange behavior for measured
temperature-based turbulence data. We extend these works by (1) using
higher order wavelet filters (non-Haar wavelets) to avoid spurious estimates
of model parameters, (2) refining novel block estimation techniques with
weighted least squares and maximum likelihood estimators, (3) develop-
ing an instantaneous (block independent) least squares estimator, (4) using
simple diagnostic statistics as means of identifying anomalous determinis-
tic structure imposed by the measurement system (thereby helping us to
eliminate scales over which a stochastic fractal model is inappropriate) and
(5) developing confidence intervals for the block dependent estimators.

Fractionally Differenced Processes

The FD process was originally proposed by Granger and Joyeux [GJ80] and
Hosking [Hos81] as an extension to an autoregressive, integrated, moving
average model in which the order of integration is allowed to assume nonin-
teger values.

Definition 2.1 Let § € R and 02 > 0. We say that {X;}tez is an FD(4, o?)
if it has a spectral density function (SDF)
2

(= gamepm 1< &)

where o2 is the innovation variance, and § is the fractionally differenced
parameter.




When 6 < 1/2, an FD process is stationary; when —1/2 < § < 1/2, its
autocovariance sequence (ACVS) is given by

R o2 sin(nd)T(1 — 26)T'(7 + 6)
X = al(r +1-0) ’

(2)

where T'(-) is Euler’s gamma function [AS64]. When § > 1/2, we obtain
a class of nonstationary processes that are stationary if {X;} is differenced
d = |6 + 1/2] times, where differencing by d means to form the process
e, (,‘f)(—l)"Xt_;C (e.g., we get X;—X;—1 whend = 1 and X;—2X; 1+X; 2
when d = 2), and |z is the greatest integer less than or equal to z. By
inspection of Eq. (1), an FD(6, 02) process approximately obeys a power law
process, i.e., Sx(f) o« |f|®, at low frequencies with a = —2§ (the error in
this approximation is quite small for |f| < 1/8 — the range of frequencies
that we are interested in for the application discussed below is well below
1/8 in standardized units). For simplicity, we assume that E{X;} =0
throughout (in practice, this assumption does not lose us any generality
in what we discuss below because of the differencing operations that are
embedded in wavelet filters). It should be noted that an FD process is
formulated in discrete time (as opposed to continuous time) so that the
highest observable frequency is the Nyquist frequency (1/2 in standardized
units). Use of discrete time models avoids nonphysical complications that
occur with continuous time power law models that have infinite variance
due to an insufficient decay of the SDF as f — oo when a > —1.

For purposes of studying turbulence data, an FD process has certain
advantages over similar models such as fractional Brownian motion (fBm)
and fractional Gaussian noise (fGn).

e UNLIMITED POWER LAW EXPONENT RANGE. Both fBm and {Gn are
stochastic power law processes in that their SDFs are approximately
proportional to |f|* at low frequencies; however, an fBm is limited
to an exponent range of —3 < a < —1 while a fGn is limited to
—1 < a < 1. An FD process is also a stochastic power law process,
but it has no such limitation on its exponent range and is theoretically
well-defined for « € R

e MODEL CONTINUITY. Because fBm and fGn jointly cover power laws
ranging from —3 up to 1 (adequate to model some — but not all -
turbulent phenomena), it is tempting to select between fBm and fGn




to model various turbulent series; however, neither model actually in-
cludes the case & = —1 (known as 1/ f, pink, or flicker noise), and there
is a discontinuity between the {Gn and fBm models close to a = —1 at
high frequencies, which can lead to problems in model selection. Un-
fortunately, many real world phenomena exhibit 1/f noise [BLW94].
An FD process has no such discontinuity. In addition, an FD process
is closed under differencing operations with regard to its SDF; i.e., an
FD(0,02) process that has been subjected to a dth order differencing
operation, yields an FD(6 — d,02) process. An fGn or fBm process
subjected to the same differencing operation will not yield the same
type of process, which is another indication that an FD process is a
more flexible and tractable model.

e TRACTABLE SDF AND ACVS. In contrast to the fBm and fGn mod-
els, an FD process has tractable forms for both its SDF and (when
stationary) corresponding ACVS; i.e., the expressions for both the
SDF and ACVS of the FD model can be readily computed without
having to approximate any infinite summations (this is not true for

fGn).

e MODEL FLEXIBILITY. Both autoregressive and moving average com-
ponents can be added to an FD process to provide more flexibility in
modeling high frequency spectral content, leading to the well-known
class of autoregressive, fractionally integrated, moving average mod-
els [Ber94]. The high frequency content of measured data is often
contaminated by exogenous noise sources, and thus flexible modeling
of this region is appropriate. The fBm and fGn models are not readily
amenable to such additions as they would further complicate the SDF
and ACVS.

Discrete wavelet transforms

Consider a uniformly sampled time series {X;}{r o' with N divisible by 27 for
J € N. For L an even positive integer, let {h;;}=;' be a Daubechies [Dau92]
wavelet filter with squared gain function

L/2-1
Hao(f) = 2sin”(nf) Y (L/-? —; 1+1

=0

) cos? (x f). (3)

Equation (3) does not uniquely define a wavelet filter, and an additional
phase criterion, such as extremal or least asymmetric phase, must be im-
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posed to do so (use of the latter criterion means that, after an approprlate
shift in time, the wavelet filter has approximately zero phase). Let {g, l} = 0
be a scaling filter, defined by the quadrature mirror filter relation

g10= (=D hy g1 (4)

The squared gain function for a Daubechies scaling filter is given by

L/2-1
G1.0(f) = 2005M(nf) Y. (L/ > ”) s(nf). ()

=0

The wavelet and scaling filters are used in a ‘pyramid’ algorithm [Mal89]
to transform {X;} into a collection of wavelet coefficients W, and sca.hng
coefficients Vj; that can be associated with scales of, respectively, 7; = y
and 27j, j = 1,...,J (these standardized scales can be converted to phys-
ical scales by multiplying them by the sampling time between contiguous
observations in {X;}). Implementation of the DWT begins by defining the
zeroth level scaling coefficients to be the original time series: Vo1 = X. The
level j wavelet coefficients W; and scaling coefficients Vj¢ are then formed
recursively by

L-1

> h1iVio1,2041-1 modN; 15 (6)
=0

L-1

Vit = 291,1Vj—1,2t+1—tmode_1, (M
=0

S
I

where t = 0,... ,N; —1 and N; = N/2}. For an integer J' satisfying
1 < J' < J, we define a level J DWT of {X;} to be the collection of vectors
Wi, Ws,... , W, Vi, where W; contains the N; wavelet coefficients W4,
while V;» contains the Ny scaling coefficients Vj .

The pyramid algorithm represented by Eq. (6) can also be interpreted
as a cascade filter bank operation. Thus an alternative (but less efficient)
method for computing Wj; is to subsample what we would get by filtering
X; with a single filter, say h;;, that 1s the equivalent filter for the cascade
filter bank. This filter is an approxunate bandpass filter with nominal pass-
band f € [1/47;,1/27;]. The corresponding equivalent scaling filter g;, used
to create the V;, is a low pass filter with nominal pass-band f € {0,1 /475
Figure 1 shows the squared gain responses H;g(f) and G;(f) for h;; and
gii § = 1,...,4, corresponding to an 8-tap Daubechies wavelet filter by
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Figure 1: The squared gain functions for Daubechies least asymmetric 8-tap
wavelet filter for levels j = 1,...,4. For simplicity, the sampling period
was set to unity to create the frequency axis and establishes the Nyquist
frequency at 1/2. The dotted vertical lines identify the frequency bands
with which the wavelet and scaling filters are associated. The scaling of the
left (right) ordinate is representative of the DWT (MODWT) squared gain
function.
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and illustrates the bandpass and lowpass nature of the equivalent wavelet
and scaling filters.

When considering the statistical properties of DWT coefficients, it is use-
ful to divide the wavelet and scaling coefficients into boundary and interior
coefficients. Boundary coefficients are those subject to change if the ‘mod’
operator were to be dropped in Eq. (6). These boundary coefficients must
be ignored, e.g., when calculating unbiased wavelet variance estimates (see
Eq. (15) below). The number of boundary coefficients in W;; or 'V is given
by min{L}, N;}, where L; = [(L — 2)(1 — 279)], and [z] is the smallest
integer that is greater than or equal to z (for large j, L; = L —2). The
remaining M; = N; — min{L}, N;} coefficients make up the set of interior
coefficients. The boundary coefficients are the first N; — M; coefficients in
W or V;, while the interior coefficients are the last M; elements in these
vectors.

A physical interpretation of the DWT based upon Daubechies’ class of
compactly supported wavelet filters is that the W;; measure the difference
(centered at a particular time) between adjacent weighted averages of {X:¢}
at scale 7;. Large values for the W;; indicate that {X;} tends to have large
variations over time scales of length 7;. Similar to the wavelet coefficients,
the scaling coefficients Vj are weighted averages of {X:} on a scale of 27;.

Despite its popularity, the DWT has two practical limitations. The
first is the dyadic length requirement. While the DWT can be adapted to
accommodate arbitrary length sequences via, e.g., polynomial extensions of
the scaling coefficients, selecting an appropriate number of end points to
fit or the order of fit is not a trivial task. Other techniques can be used,
but generally involve either complicated bookkeeping or are too simple to
accurately portray the dynamics of the scaling coefficients. The second
limitation is a sensitivity of the DWT to where we start recording a time
series; i.e., the decimation operation makes the DWT a non shift-invariant
transform so that circularly shifting the time series can alter the entire DWT.

To overcome these limitations, we can use a nondecimated form of the
DWT, known as the maximum overlap DWT (MODWT), that has two
main advantages: (1) it handles arbitrary length sequences inherently and
(2) circularly shifting the time series will result in an equivalent circular
shift of the MODWT coefficients. Additionally, the number of coefficients
in each scale is equal to the number of points in the original time series. This
refined slicing of the data in combination with the approximate zero phase
property of the least asymmetric filters allows us to calculate ‘instantaneous’
statistical measures of the data across scales (see §2.1).
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As in the DWT, implementation of the MODWT begins by defining
the zeroth level scaling coefficients to be the original time series: Vp: =

Xt. Let hll h1 [/\/2 and ¢ 911 = g”/\/2 for | = 0 L — 1. The
MODWT wavelet coefficients WJt and corresponding scalmg coeﬁiments VJ ¢
are formed recursively by

L-1

Wie = h ,le—l,t—2J""11modNa (8)
=0

Vj,t = ,le—l,t—w'—llmodNa (9)
=0

where t =0,... ,N — 1. The collection of vectors W1,W2, \7\7 J,\~/ g is
the level J' MODWT of {X;}, where W contains the N wavelet coefficients
WJ ¢, while V g h has the N scalmg coeflicients VJI The number of boundary
coefficients in W or V;j is L; = min{(2/ — 1)(L — 1), N}.

If the sample size N is a power of two, the MODWT coefficients and
DWT coefficients are related by

Wj’t = 2j/2Wj,2j(t+1)_1 and ‘/j’t = 2j/2%,2j(t+1)_1. (10)

The DWT can thus be seen as a scaled and subsampled version of the
MODWT. As was true for the DWT, we could obtain th by filtering X;
directly with an equivalent MODWT wavelet filter hJ ;- This filter is related
to the corresponding DWT wavelet filter by th = hjy /29/2 and a similar
result holds for the scaling filters. The MODWT squared gain functions are
thus given by ’H], (f) = 279H; L(f) and g]L(f) = 279G; 1(f) (see Fig. 1).

Estimating FD parameters with wavelets

Suppose that we have a time series that can be regarded as a realization
of a portion X = [Xg, X1, ... , Xn_1]T of an FD(4, 0?) process. In this sec-
tion we discuss three schemes for estimating the parameter § via a wavelet
transform of X. The first two schemes make use of the fact that the re-
lationship between the variance of the wavelet coefficients across scales is
dictated by 4 in such a manner that we can construct a least squares es-
timator (LSE) of § (Abry et al. [AGF93, AG95], Abry and Veitch [AV98]
and Jensen [Jen99b] consider similar estimators). The third scheme is a
wavelet-based approximation to the maximum likelihood estimator (MLE)
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of § (Wornell and Oppenheim [W092], Wornell [Wor93, Wor96], Kaplan and
Kuo [Kap93], McCoy and Walden [MW96] and Jensen [Jen99a, Jen00] dis-
cuss related wavelet-based MLEs). The first LSE and the MLE make use of
the entire time series and hence are called ‘block dependent’ estimators; by
contrast, the second LSE utilizes only certain coefficients that are colocated
in time, and we refer to it as an ‘instantaneous’ estimator (this estimator
would not change if, e.g., we were to lengthen the time series by prepending
it with X_,). >

3.1.3(a) Block dependent weighted least squares estimator

Let VA\”j be the MODWT wavelet coefficients for scale 7;. Here we develop
a weighted LSE (WLSE) of 6 based upon an estimator of the variance of
the interior coefficients in W ; over a range of scales 7; givenby Jo <j< N1
(the selection of Jy and J; is application dependent — see §2.3). Under
the assumption that the length L of the wavelet filter is chosen such that
L/2> |6+ %—J , these interior coefficients are a portion of a stationary process
obtained by filtering X with the equivalent MODWT wavelet filter hj;.
Since the squared gain function for h;; is given by ’H~j,L( f), the SDF for the
interior coefficients is given by ’ﬁj,L( f) Sx(f), and hence their variance can
be expressed as

~ /2 .
() = v (Wi = [ Faa(f) Sx(6) & (1)

Using the approximation that #H; 1(f) is an ideal bandpass filter over |f| €
[1/27+1,1/27] and taking into consideration the even symmetry of SDF's, an
approximation to the wavelet variance is given by
0 1/27
vy(T;) =2 S df. - (12
kmmzf | Sxnd (12

For fractionally differenced processes, we have

2 2 [V o d 13
VX(T])"" /1/2j+1 |2sin(7rf)|2‘5 f ( )

When j > 3, so that sinwf = nf, Eq. (13) can be approximated by

v (1) = o2 &) 77, (14)
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where ¢(8) = 772(1 — 229-1) /(1 — 26). Equation (14) suggests that a direct
means of estimating § is to fit a least squares line to the logarithm of an
estimate of the wavelet variance, say D%(Tj). The slope of the line, say 3,
that best fits In(9% (7;)) versus In(7;) in a least squares sense is related to the
FD parameter by § = (8+41)/2 and the power law exponent by a = —(8+1).

Given a time series of length N, we can obtain an unbiased MODWT-
based estimate of the wavelet variance by defining

A== 3 W, (15)

where ﬂj =N- Zj + 1 is the number of MODWT interior wavelet coeffi-
cients. As a caveat, it should be noted that the wavelet variance estimates
are somewhat sensitive to the order L of the wavelet filter used in the analy-
sis. In particular, studies by one of us [PW00] have shown that there can be
a significant bias in estimating ¢ (and hence «) if we use the Haar wavelet
filter (for which L = 2). This bias can be attributed to a spectral leakage
phenomenon and can be attenuated by increasing L. In practice the choice
L = 8 works well, so we have used it in all analyses presented in this paper.

The distribution for ﬁX(TJ) is approximately that of a random variable
given by xn v%(7j)/nj, where Xn is a chi-square random variable with n;
degrees of freedom (§8.4 of [PWOO] discusses three methods for determining
n;, the simplest of which is to set n; = max{M /27,1}). Define

Y(r;) = (% () - o(F) +n(F), (16)

where () is the digamma function. The properties of the chi-square dis-
tribution dictate that

E{Y (r;)} = In(vk(73)) and var{Y (7))} = ¢'(n;/2), (17)

where 9/(-) is the trigamma function. By assuming the approximation af-
forded by Eq. (14), we can now formulate a linear regression model Y (7;) =
4 + Bln(7;) +e;, where e; = In (2% (7;)/v% (75)) — %(n;/2) +1n (n; /2) defines
a sequence of errors, each with zero mean and variance ¥'(n;/2). If we take
into account the inhomogeneity in the variance in these errors, we arrive at
the WLSE of the slope term g given by

Bwlse =
Y w; S w;iIn(m)Y (75) = Y w; In(ry) 3 wiY (75) (18)
T wjrwj In® (15) — (X wj In(75))? ’
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where w; = [/'(n;/2)]"", and all sums are over j = Jo, .- ,J1. The weighted
least squares estimate of the FD parameter is then

. 1 -
‘Swlse = 'i(ﬂwlse + 1) (19)

If we ignore the possible correlation between the error terms (which we can
decrease by increasing L), the variance of Byise is given by

) wj

var{Buise} = )
we Y wj ¥ wj In*(75) — (Z w;In(75))?
(20)
and thus the variance of the dyse is given by
. 1 .
var{dyise} = Zvar{ﬂwlse}. (21)

Monte Carlo studies indicate that Eq. 20 tends to overestimate the vari-
ability in By1se somewhat and thus can be regarded as a conservative upper
bound [PW00].

3.1.3(b) Instantaneous least squares estimator

The block dependent WLSE we formulated above depends upon the en-
tire time series Xo,... ,Xn—1. For time series whose statistical properties
are evidently evolving over time (such as the aerothermal data considered
in §2.3), the assumptions behind this estimator are violated, and it is prob-
lematic to use this estimator on the entire times series. If, however, we can
divide the time series up into blocks within which we can assume that the
data are the realization of an FD process (with parameters that are now
allowed to vary from one block to the next), we can apply the WLSE esti-
mator on a block by block basis. In practice, each of the blocks will contain
the same number of points, so we can now consider N to be the size of each
block rather than the length of the entire time series. The choice of N is
usually subjective and thus open to question, so it is useful to have some
means of verifying that a particular choice is appropriate. We can do so
by formulating an ‘instantaneous’ estimator that is independent of N and
that can be used to check for departures from statistical consistency within
a proposed block size.
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The idea behind an instantaneous least squares estimate of § is to use
only a single wavelet coefficient from each scale; i.e., we only use Wf,tj to es-
timate v% (7;), where t; is the time index of the j** level MODWT coefficient
associated with time ¢ in {X;}~¥5!. The time index t; can be meaningfully
determined only if (approximate) linear phase wavelet filters are used. With
this substitution, the time dependent form of Eq. (19) becomes

2 A Y In(7)Ye(r5) — ¥ In(ry) 3 Ya(r;)
Olset = ’
tat 2 S () = (S

(22)
where Ay = J; — Jo + 1 and all sums are over j = Jo,... ,J1 and
Yi(r3) = (W) — (1/2) — In(2). (23)

To decrease the variability of the estimates A should ideally be set to be
as large as is feasible.

3.1.3(c) Block dependent maximum likelihood estimator

Wavelet-based maximum likelihood techniques can be used in harmony
with an FD model as another means of obtaining estimates for FD parame-
ters. Using the DWT is advantageous in that it is known to decorrelate long
memory FD and related processes, forming a near independent Gaussian
sequence, and thus simplifying the statistics significantly [CPGO00a]. The
basic idea is to formulate the likelihood function for the FD parameters 4
and o? directly in terms of the interior DWT wavelet coeflicients. Let W,
be an M = }_; M; point vector containing all of the interior DWT wavelet
coefficients over a specified range of scales j = Jp,... ,J;. We can write the
exact likelihood function for § and o? as

-WTSy, Wi/2
(2m)M/72|Dw, [/’

where Zw, is the covariance matrix of Wy, and |Zw,| is the determinant
of Zw,. Note that the dependence of the likelihood function on 4 and o? is
through Sw, alone. Under the assumption that the wavelet coefficients in
W are approximately uncorrelated, Eq. 24 can be approximated by

i A Mj-—l e—WJ?‘¢+L_,1'/(2Cj (6»‘73))
L(8,02|Wp) = 2
( aasl I) H H (271.01,(6,0.2))1/2 ’ ( 5)

j=Jo t=0

L(5,02|W/) = (24)

17




where C;(,02) is an approximation to the variance of Wj given by the
average value of the SDF in Eq. 1 over the nominal pass-band [1/47;, 1 /27;]
for the equivalent wavelet filter h;;. The estimate Smle of § is obtained by
maximizing £(8,02|W) with respect to 4. Equivalently we can consider the
reduced (natural) log likelihood function

J1
I(6|W) = MIn(52(8)) + Y M; In(Cj(9)), (26)
j=Jo

where C}(8) = C;(5, 02)/o?e, and

:(0) = 37 Z 0] Z: Wi, (27)
j=Jo J t=0

(see [PW00] for explicit details on the development of the reduced (natural)
log likelihood function using the DWT coefficients). Minimizing Eq. (26),
which is a function of § alone, yields the maximum likelihood estimate dmie,
after which we can compute the corresponding estimate for o? by plugging
bmie into Eq. 27.

Under the assumption that § € [—1/2, L/2], the estimator bmie for large

M is approximately Gaussian distributed with mean ¢ and variance

o} = 2[%2 M;¢5 ~ % ( i Mj¢j)2}~l, (28)
j=Jo

Jj=Jo
where
_ 40?2 vz In(2sin(n f))
= wwrrh D emenp 9

9j+2 1/27j In(2sin(nf))
/1 _ESAI Y g (29)

o (Smie) J1/47; [2 Sin(1rf)]2‘§m'e

J

Q

(see [CPGOOD] for details). In practice, the right-hand integral can be ap-
proximated through either (i) numerical integration or (ii) a Taylor series
expansion about the mid-band frequencies for levels j = 1,2 along with
direct integration using a small angle assumption for j > 2. The approxi-
mation above is based upon the view that the wavelet transform forms an
octave band decomposition. There is generally a large increase in computa-
tional speed when using this bandpass approximation with relatively small
loss of accuracy.
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2.2 Wavelet-based forecasting for non-stationary multi-scale
fractal processes

In our article [CPRO1], we used a fractionally differenced (FD) process to
model aerothermal turbulence data. The spectral density function for an
FD process obeys a power law at low frequencies. An FD process has two
parameters, one of which, namely d, can be related to the power law ex-
ponent « simply by o = —24. In our work we used wavelet techniques to
estimate § and hence . In addition to their attractive computational prop-
erties, these wavelet-based estimators are statistically tractable and allow
us to study time-evolving FD processes; i.e., we allow « to vary over time.
If we let oy represent our estimate of o at time ¢, then o constitutes a time
series (specifically, we form this series using wavelet-based block dependent
weighted least squares estimates for a 7.5 million point aerothermal turbu-
lence series over scales spanning 0.59-2.35 meters in length; see [CPRO1]
for details). In this progress report, we summarize our studies to date on
modeling o4 for the purpose of obtaining forecasts of its future values (if
we could accurately forecast oy, we would be able to forecast some salient
properties of upcoming atmospheric turbulence). Specifically, we use five
stochastic models to predict a;. Four of the five models are special cases
of fractional autoregressive, integrated, moving average (FARIMA) models
(these are also called ARFIMA models). These are first and fourth order
autoregressive (AR) models, an integrated moving average (IMA) model
and an FD model. The fifth model is a semiparametric fractional autore-
gressive (SEMIFAR) model [Ber], which is an extension of a subclass of
FARIMA models that allows for the possibility of a nonpolynomial deter-
ministic trend. In what follows, we describe each of the models briefly (§2.2)
and then summarize how well we can predict the a; series using each model

(52.2).

Stochastic modeling and prediction

As noted above, four of the five models that we consider for a; are special
cases of a FARIMA model. We can define this model in terms of manipu-
lations yielding a process that can be directly related to a Gaussian white
noise process €¢; with mean zero and variance o2. To do so, let B denote
the backward shift operator so that Bay = a;—1 (more generally, we have
Bla; = az—j). Let ®,(B) =1~ ;’:1 ¢ij be a pth order polynomial in
B so that, for example, ®3(B)oy = oy — prag—1 — Pp201—2 (for completeness,
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we define ®o(B) = 1). This polynomial captures the autoregressive (AR)
portion of the model. Similarly let ©4,(B) =1 - 2;{:1 0;B7 (for technical
reasons, we constrain the coefficients ¢; and 6; so that the roots of the
resulting polynomials ®,(B) and ©4(B) are all greater than unity in mag-
nitude). The polynomial ©,4(B) captures the moving average (MA) portion
of the model. Let d be a nonnegative integer so that (1 — B)%a; represents
the dth order backward difference of oz (thus, (1 — B)ay = a; — o3 and
(1-B)%0;=(1-2B+ B?)a; = ag — 2041 + oy are the first and second
order backward differences). For ds € (—1/2,1/2), we define a fractional
difference operator via

—_ 55___00 ds ERLY) '=oo T'(ds +1) _\ipi
4= fi:()(j)( DB = Y GG -7 7D D T g

With the above definitions, we say that o; is a FARIMA process if we can
write

®,(B)(1 - B)%:{(1 — B)%a; — p} = Oq4(B)e, (31)

where 4 is a real-valued constant. Thus, if we take the dth order backward
difference of oy and subtract p from it, then the resulting process, say B =
(1 — B)%ay — p, can be expressed as

B, = ;1 (B)(1 — B)"*0(B)et,

i.e., a (possibly infinite) linear combination of Gaussian white noise.

AR(1)

¢ MATHEMATICAL MODEL:
31 (B)(onw — p) = &, i€, op = p+ (a1 —p) (32)

e DESCRIPTION: An AR(1) model is a special case of a FARIMA process
in which p = 1, & = 0, d = 0 and ¢ = 0. An AR(1l) model is
widely used in the physical sciences as a convenient simple model for
a correlated time series. The estimated parameters for this model are
é1 = 0.88 and 62 = 0.089 (u is estimated using the sample mean & of
the ay values).
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AR(4)

¢ MATHEMATICAL MODEL:

4
B4(B)(ay —p) =€, ie, ax=p+ Y djlaep—p)  (33)
j=1

e DESCRIPTION: Like the AR(1) model, an AR(4) model is a special

case of a FARIMA process, but now we set p = 4. This value of p was
determined by using the AIC order selection criterion to select a best
model from the class of AR(p) models. The estimated parameters are
é1 = 0.55, ¢1 = 0.13, ¢, = 0.05, ¢1 = 0.23 and 67 = 0.075 (again, p
is estimated using &).

IMA(L,3)

¢ MATHEMATICAL MODEL:

3
(1 - B)at = @3(3)6,5, ie, qp = a1 +¢&— Zejé't_j
= (34)

e DESCRIPTION: An IMA(1,3) model is a special case of a FARIMA

process in which p =0, & = 0,d = 1and ¢ =3 (the parameter
p actually drops out). Use of a FARIMA model with d = 0 was
suggested by the fact that one of the roots of ®4(B) for the AR(4)
model above was fairly close to the unit circle, which is one indication
that taking the first difference of o; might be useful. With d =1 and
s = 0, an examination of different low order choices for p and ¢ led
to the IMA(1,3) model. The estimated parameters are 61 = 0.4976,
6, = 0.1373, 6; = 0.0879 and &? = 0.074. The residuals from this
fitted model are very close to white noise.

FD(5)

e MATHEMATICAL MODEL:

(1-B)Y{ay—p}=¢e ie, oy=p+, (—fs“’) (—1Yerj
=0\ J (35)
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e DESCRIPTION: A stationary FD(ds) process is a special case of a
FARIMA process in which p = 0, d = 0 and ¢ = 0 (letting d be a
positive integer leads to the nonstationary FD processes) The maxi-
mum likelihood estimates of the FD parameters are s = 0.4948, which
is quite close to the nonstationary boundary (0.5). This model ex-
hibits an approximate power law behavior in its SDF over normalized
frequencies f € (0,1/8], with an exponent given by —0.9896. An al-
ternative way of estimating &s is to regress the log periodogram versus
log frequency for frequencies 0 < f <1 /8. This yields an estimate of
6; = (.4847, which is quite close to the maximum likelihood estimate.

SEMIFAR(p, 65, d)

e MATHEMATICAL MODEL:
®,(B)(1 - B)*{(1 - B)!ax — Tz} = &, (36)

where T}, is assumed to be a smooth function representing a determin-
istic trend in the dth difference of o;.

e DESCRIPTION: A SEMIFAR(p, ds,d) process cannot be expressed as
a FARIMA process and is not a generalization of this process because
it does not allow for a moving average component. With ¢ = 0, we
obtain a SEMIFAR process from a FARIMA process by substituting
the trend component Ty for u. With d taken to be zero, we fit this
model using a two step procedure. In the first step we estimate T; by
locally fitting weighted low order polynomials (lowess) with a band-
width of 110 points, from which we can form a set of residuals. The
use of lowess here differs from the conventional kernel smoother used
by Beran [Ber], but it yields a much smoother trend. The resulting
trend function is well modeled locally by a quadratic function; i.e.,
(1 — B)?T; = 0. In the second step we considered both AR(p) and
FD(8s) processes as models for the residuals. We chose an FD process
here and obtained the maximum likelihood estimate 65 = (.448 (this
compared well with a periodogram-based estimate of bs = 0.449).

Prediction Results

The results presented in this section represent a manual optimization over
model parameters based on a minimization of the mean squared prediction
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Table 1: Prediction errors of the block-based oy series.

average width | # points outside
method MSPE | of error bars error bars
AR(1) 0.1788 2.4765 0
AR(4) 0.1668 2.0942 0
IMA(1,3) 0.3024 1.8896 3
FD(ds) 0.2238 1.3918 9
SEMIFAR(0,ds, 0) | 0.1700 1.2691 6

error (MSPE) defined by

Y@ — oy)?
Ztt(at —a)? (37)

where &; and a; are the predicted and true values, respectively, and & is
the sample mean of o;. In each case, the first 700 points of the oy series
were used to obtain the model parameters. The optimized model was then
used in a recursive single step prediction routine to predict the remaining
50 points of the «; series.

Table 1 and Fig. 2 summarize the prediction results. The AR(4) model
had the lowest MSPE, but the SEMIFAR and AR(1) models gave competi-
tive results (less than a 10% increase in MSPE). While the average width of
the error bars was smaller for the SEMIFAR model than any other model,
it also had more points outside the error bars than either of the autoregres-
sive models. Overall the results are encouraging and suggest that we can
make fairly accurate short-term prediction of the time-varying power law
exponent a;.

MSPE =

2.3 Analysis of measured aerothermal turbulence data

Using the techniques described in §3.1, we estimated the FD parameter ()
using turbulence-related data supplied to us by our Air Force sponsor. In
this section, we discuss our results of this application. For a more detailed
discussion see [CPRO1}.
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Figure 2: (a) Block dependent weighted least squares estimations (WLSE) of
ay over scales Tg—7g for a temperature related 7.5 million point aerothermal
turbulence series (see [CPRO1] for details). The dots represent the WLSE
while the line is a lowess smooth trend. A 50-step ahead prediction was
forecast using the first 700 points of this oy series using (b) an AR(1) model,
(c) an AR(4) model, (d) an IMA(1,3) model and (e) FDP(ds) model. (f)
Prediction using the SEMIFAR models (1 — B)%(a; — Ty) = &, where §s =
0.448 and T, is the trend estimated through some nonparametric smoothing
technique (here we use the lowess smoother as shown in (a)) . In each case,
the ay series is denoted by the dotted solid line while the letter ‘p’ denotes
the predicted value with 95% confidence intervals spanned by the ‘¢’ letters.

24




Description of the data

Here we examine a uniformly sampled 7.5 million point aerothermal turbu-
lence data set (referred to as ‘aero’ henceforth). These data are a temperature
related time series gathered by an aircraft flying at a constant (or linearly
increasing) elevation and constant speed in clear air conditions. The mea-
surement system is a cold-wire probe, externally attached to the aircraft,
that senses fluctuations in local temperature by means of a proportional
change in wire current. The data span a total distance of 137.3 km with
a spatial resolution of approximately 1.83 cm. Due to the large amount of
data in the aero series, we will use MA(g,r) filters (moving average using
windows of length g with an overlap of r points) for purposes of display
and comparison of results. Figure 3 shows the aero series smoothed with
a MA(10000,0) filter. Typical of turbulence data, the aero series exhibits
seemingly random fluctuations at various scales and times. This particular
set of data seems to have a change in some of its characteristics after about
80 km.

Time (min)
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Figure 3: The aero series smoothed with a MA(10000,0) filter.

FD model validation

Figure 4 shows a DWT transform of a small segment of the aero series using
Daubechies 8-tap least asymmetric filters, while Fig. 5 shows the correspond-
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ing MODWT. The relationship between the DWT and MODWT given in
Eq. (10) can be visualized, for example, by comparing the DWT scaling
coefficients Vg, in Fig. 4 with the corresponding MODWT coefficients Vg
in Fig. 5.

wi1{-2}

W2{-2) e AR A A b i Sy e

W3] et lottobaetoinip ottt i e
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Figure 4: DWT of aerothermal data segment using Daubechies 8-tap least
asymmetric filters. The number in the curly brackets next to each subband
represents the amount of circular shift imposed to adjust the coefficients to
approximate zero phase. A negative shift value implies an advance, or left
circular shift, of the coefficients.

Let us now consider modeling the aero series as the realization of an
FD process. We begin by considering some diagnostic statistics designed
to help us ascertain if in fact an FD model is appropriate. If this series
were an actual realization from an FD process, then, to a good approxima-
tion, the interior coefficients in W; should be a realization of a white noise
process [PW00, CPGO00a]. To see if this is true, let us look at the sample
autocorrelation functions (ACFs) for Wj, j = 1,...,11, of a representa-
tive sample of the aero data along with the ACF of the data itself (Fig. 6).
Under the white noise hypothesis, standard statistical theory suggests that
roughly 95% of the sample ACF values for the wavelet coefficients at scale
7; should fall between + 2,/N; —n/N;, where n is the ACF lag, restricted
here to range from 0 to 128 [Ful96]. The actual percentage of coefficients
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Figure 5: MODWT of aerothermal data segment using Daubechies 8-tap
least asymmetric filters.

that fall within these limits is shown to the right of each plot. The ACF
of the aero segment itself shows a persistent positive correlation typical of
an FD process; however, the ACFs for Wy, ... , W; exhibit correlation well
outside the white noise limits, evidently due to energetic deterministic pat-
terns. This is particularly apparent in the ACFs for W4 and Wi, which
exhibit a strong (SNR > 0.5) sinusoidal beating pattern and pure sine wave
pattern, respectively. These periodicities are suspected to be due to an
exogenous factor unrelated to aerothermal turbulence such as a periodic au-
topilot correction or harmonic resonance of the probe armature, inducing a
local vibration (and corresponding recorded temperature fluctuation) in the
cold wire probe instrumentation. As a result, these deterministic compo-
nents render an FD model inappropriate over those scales. For scales 75 and
77, the percentages of sample ACF values falling within the limits are still
half to two thirds of the nominal value of 95%, but the values are nonetheless
quite small in magnitude (< 0.08 for 7 and < 0.14 for 77); for scales 73 and
above, the percentages are fairly close to 95%. Thus, in keeping with an FD
model, the DWT effectively decorrelates the aero segment over scales 7¢ and
higher, so this ACF-based diagnostic suggests just applying the FD model
over these scales.
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Figure 6: Biased autocorrelation functions of a 219 point segment of the
aero series and of DWT coefficients for W1,... , Wy;.

Let us now look at a second diagnostic statistic, but based upon the
interior MODWT coefficients in W. Figure 7 shows an example of unbiased
wavelet variance estimates for one 2% point block in the aero series. As can
be deduced from Eq. (14), a multiscale linear pattern in a In-In plot of the
wavelet variance versus 7; would be consistent with the presence of an FD
process; however, this figure shows that such linear patterns appear only
over a quite limited range of scales. If we segment the In scaled wavelet
variance curve into regions over which a linear relationship appears to hold,
we obtain a different FD parameter § over scales 7y — 74, 75 — 77 and 73 — 711.
These patterns change with different blocks, indicating both time varying
and scale dependent power law behavior.

Using the collection of diagnostics shown in Fig. 6-7, we can demonstrate
the methodology described in this report by fitting separate FD models to
the aero series over two finite ranges of scales, namely, 76 — 78 and 79 — 711,
each spanning approximately three octaves of frequencies (to simplify our
discussion and accompanying figures, we do not consider triads of higher
scales).
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Figure 7: The unbiased MODWT wavelet variance % (7;) of a representative
portion of aero using Daubechies least asymmetric 8-tap wavelet filters. The
confidence intervals are based on a chi-square distribution assumption where
the degrees of freedom are calculated (1) using a large sample approximation
to the mean and variance of 0% (r;) for scales 71,... ,75 and (2) under an
assumption that the SDF is flat over the nominal passbands in which the
wavelet coefficients are associated for 7g,... ,711. See [PWO00] for details of
wavelet variance confidence intervals and their development.
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Block dependent WLSE

Using Eq. (19) and the relation a = —24, the &yise were calculated for the
aero series over scales 75 — 73 and 79 — 111 (Fig. 8). For simplicity, we define
the term a’j"sj to mean the WLSE of the power law exponent over scales
TJo,..- ,TJ1. The a""se and a},"lff were estimated over contiguous nonover-
lapping blocks of size 10000 and 20000, respectively. Due to the sampling
variability present in the wavelet variance estimates, we smoothed all a’_}’(fsjl
with a MA(20, 19) filter (the choice of this particular filter is somewhat arbi-
trary, but such smoothing is helpful in making it easier to see how « evolves
in time over the two groupings of scales). Note the apparent wide range
of a""se and a},"’ff, which roughly span values appropriate for stationary
white noise up to nonstationary random walk noise. This clearly suggests
that a single (Kolmogorov) exponent is not an adequate description of this
aerothermal turbulence data as might be incorrectly construed from conven-
tional Fourier-based methods (see §2.3). To quantify this effect we define
the inertial range percentage as

100 & ) R
Ijo = P U(Var{aJO,Jl,P}l/z — &9,y ,p + 5/3|), (38)

p=1

where U(-) is the unit step function and é,,4, p is the &y, at block p in

time. The I%sfl represents the percentage of unsmoothed a’j’olsje that falls

within + var{oﬂ”’se }1/2 of the Kolmogorov exponent (@ = —5/3). Using
Eq. 38, the 1nert1al range percentages for the WLSE curves were found to
be I""se = 8% and 5”{‘“’15 = 45%. Most of the inertial range percentage is
achieved where there is a moderate coupling of oz‘“lse and ag”ff over (ap-
proximately) 20-80 km.

Block independent (instantaneous) LSE

Instantaneous LSEs of « over scales 7 — 73 were calculated for the entire 7.5
million point aero series using Eq. 22. Figure 9 shows the &ﬁfgt smoothed
with a MA(10000,0) filter. These estimates follow the same pattern exhib-
ited by the a“’“e shown in Fig. 8 but with a bit more variability. These
variabilities are not captured by the block dependent estimators and illus-
trate the importance of using time dependent estimators for a more accurate

portrayal of the (turbulence) dynamics.
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Figure 8: The ag’ge and &’,f’flsf of the aero series smoothed with a MA(20, 19)
filter. The confidence limits are for the smoothed estimates shown and are
constant since the number of scales over which the estimates are made is
constant.
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Figure 9: Unbiased Gy, for the aero series. As a means of comparison with
Fig. 8, a MA(10000,0) filter was used to smooth the results.
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Block dependent MLE

Figure 10 shows the maximum likelihood estimates of o for the aero series
smoothed with a MA(20,19) filter. These estimates are noticeably more
coupled in the spatial range of 20-80 km than are the éuyse shown in Fig. 8.
Outside of this spatial range, however, both the dg’fg“ and the dgfée show
a strong departure from Kolmogorov turbulence. This change in process
dynamics is somewhat discernible in the smoothed plot of the aero series

(Fig. 3). The resulting inertial range percentages for the dmie are I{;’fge =

9% (~ Igg*) and Iff§ = 22% (~ I51y°/2).

Time (min)
1.38 278 417 5.56 6.94 8.33 9.72 1.1

_— T T 0.59 m - 2.35 m (smoothed)
Ty~ Tyt 4.69 m - 18.77 m (smoothed)

White

Pink

Kolmogorov

Walk

" . n n L " "
[} 18.33 36.67 55 73.33 91.67 110 128.33 146.67

Space (km)

Figure 10: The dg’fée and &gf{‘i of the aero series smoothed with a MA(20,19)
filter.

Comparison to Fourier techniques

Finally, for contrast, let us look at a common way to analyze turbulence
data through an estimate of its SDF. Conventionally, power law exponents
are estimated directly from an estimate of the SDF for the data. For ex-
ample, the slope of the SDF on a log-log scale provides a direct estimate of
a. Figure 11 shows the SDF of the entire aero series, computed by parti-
tioning the aero series into 2! point blocks, forming a spectral estimate for
each block and then averaging the spectral estimates together. The average
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SDF portrays a strong Kolmogorov turbulence slope of a = —5/3 over many
octaves. This global approach masks the fact that there are significant de-
viations from the —5/3 law locally in time and hence does not accurately
portray the dynamics of a. We could, of course, track the power law esti-
mate of each block as time unfolds, but we would then need some scheme for
partitioning the frequencies into regions over which a single power law is ap-
plicable. If we use a partitioning scheme that is essentially the same as what
our wavelet methodology yields, the work of McCoy et al. [MW96] shows
that wavelet-based estimates of & have better mean square error properties
than do those based upon the SDF.

10.1[_ — - aero (average)
— FDP (5=58) |:

— PPL(x=-573) ]!
X

: O
10 10 10° 107 10°
Inf

Figure 11: Averaged estimated SDF for aero series and the theoretical SDFs
for an FD process and pure power law (PPL) model of fully developed
Kolmogorov turbulence with an infinite inertial range. The FDP and PPL
curves are purposefully offset from the average SDF of aero series so that their
In-In SDF slopes may be easily compared over a broad range of scale. The
vertical divisions represent the octaves over which the wavelet coefficients
at scale 7; are nominally associated.

Discussion of results for FD parameter estimators

In this progress report we have introduced three wavelet-based techniques
to estimate FD model parameters for aerothermal turbulence data: block
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independent (instantaneous) LSE, and block dependent WLSE and MLE.
The block dependent WLSE and MLE verify the presence of time varying
power law processes with an estimated power law exponent spanning from
white noise to nonstationary red noise and applicable over finite ranges of
scale. Additionally, averaged block independent LSEs were shown to match
well with block dependent WLSEs. The LSEs are an effective means of
obtaining instantaneous estimates of FD parameters (or, through the ap-
proximation o = —26, the power law exponents) and are consequently very
useful in detecting changes in a system whose dynamics fluctuate rapidly as
a function of time or scale. For the block dependent WLSE, we introduced
methods for calculating the variance of FD parameter estimates and corre-
sponding confidence intervals. For a specified range of the FD parameter 4
and under a large sample assumption, we showed that the the block depen-
dent MLE estimator &,y is approximately Gaussian distributed with mean

8, and we developed the variance of the estimator (o g )- To summarize

the departure of the estimates from (fully developed) Kolmogorov turbu-
lence, we introduced the inertial range percentage statistic, which quantifies
the time and scale dependent intermittency of Kolmogorov turbulence. The
collection of results supports the efficacy of using stochastic FD models for

aerothermal turbulence data.

2.4 Personnel Supported

The key personnel, their affiliation, and role on this project is given shown
in Table 1.

TABLE 1: PERSONNEL SUPPORTED BY THIS PHASE II STTR

| PERSONNEL | AFFILIATION il
Dr. WILLIAM CONSTANTINE (PI) | INSIGHTFUL
DR. DONALD PERCIVAL INSIGHTFUL
DRr. JoBN LU INSIGHTFUL

oF WasH. (M.E.)
OF WASH. (BIOENGINEERING)
OF WASH. (STAT.)
oF WasH. (M.E.)

PrOF. PER REINHALL (PI, UW)
PRrROF. JAMES BASSINGTHWAIGHTE
DRr. PETER CRAIGMILE

GERRY PAGEL

SRSRERS

34




2.5 Interactions/Transitions

The technology produced by this STTR has been leveraged primarily by our
rapidly growing consulting department, particularly in the area of finance.
Wavelet techniques have played an important role in time-scale analysis of
financial time series for our clients, such as Deutsche Bank and Lincoln
Capital, who are preparing for the onset of a fully automated electronic
trading environment. These real-time environments call for robust scale-
and time-based modeling schemes. The revenue generated by our (wavelet-
based) consulting for financial institutions is estimated at $300,000 for a
12-month period within the years 2000-2001. We expect this market to
grow to over $500,000 in 2002.

3 Software

Here we describe the C library used to developed S+WAVELETS. The man-
ual for the ‘beta’ version of S+WAVELETS is attached as an appendix to
this report.

3.1 MUTILS C Library Function List

A majority of the base software was written in C for speed and portability.
The naming convention for each is based on a strict prototype used by
Insightful for its in-house signal and image processing libraries known as
MUTILS.

Wavelet Transforms

e wavuniv_transform_discrete_wavelet_convolution: Implemen-
tation of discrete wavelet transform using convolution style filtering
with periodic boundary extension.

e wavuniv_transform_discrete_wavelet_convolution_inverse: In-
verse discrete wavelet transform using convolution style filtering.

e wavuniv_transform_maximum_overlap: Maximal overlap discrete
wavelet transform.

e wavuniv_transform_maximum _overlap_inverse: Inverse maximal
overlap discrete wavelet transform.
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wavuniv_transform_maximum_overlap_packet: Maximal overlap
discrete wavelet packet transform.

wavuniv_transform_packet: Discrete wavelet packet transform with
convolution style filtering.

wavuniv_transform_packet_detail: Detail sequence calculation for
the discrete wavelet transform, the discrete wavelet packet transform,
the maximal overlap discrete wavelet transform and the maximal over-
lap discrete wavelet packet transform.

Wavelet Filter and Coefficient Indexing Functions

wavuniv_coefficient_boundaries: Boundary and interior wavelet
coefficient identification for the discrete wavelet transform and the
maximal overlap discrete wavelet transform.

wavuniv_filters_daubechies: Daubechies wavelet and scaling filters.

wavuniv_filters_daubechies_gain: Gain functions for Daubechies
wavelet and scaling filters.

wavuniv_filters_daubechies_verify: Verification of general filters
as Daubechies filter sets.

wavuniv_coefficient_zero_phase: Shift factors for achieving approx-
imate zero phase for Daubechies symmlet and Coiflet filters.

Statistical Functions for Wavelets

wavdbl_digamma: Digamma function: first derivative of the natural
logarithm of the Euler Gamma function.

wavdbl_trigamma: Trigamma function: second derivative of the
natural logarithm of the Euler Gamma function.

wavuniv_statistic_acvs: Single-sided autocovariance sequence.

wavuniv_variance_confidence: Confidence intervals for the biased
and blocked averaged discrete wavelet variance estimates.

wavuniv_variance_confidence_edof: Equivalent degree of freedom
estimates for a chi-squared distribution assumption on the interior
wavelet coefficients.
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e wavuniv_statistic_interpolation_linear: Table lookup using linear
interpolation for 1-D matrices.

Wavelet Functions for Fractionally Differenced Processes

e wavuniv_fdp_bandpass_variance: Integration of spectral density
function using a mid-octave approximation. ’

e wavuniv_fdp_estimator_instantaneous: Instantaneous and local-
ized maximum likelihood estimation and least squares estimation of
fractionally differenced model parameters.

e wavuniv_fdp_estimator_block: Block dependent maximum likeli-
hood estimation and weighted least squares estimation of fractionally
differenced model parameters.

¢ wavuniv_fdp_simulate: Exact time-varying fractionally differenced
process simulation.

e wavuniv_fdp_simulate_weights: Circulant embedding weights used
to generate exact simulations of time-varying fractionally differenced
processes.

These functions represent a major subset of the code developed thus
far in C. For each C function listed above, a set of wrapper functions (one -
in C and one in S-PLUS) was developed so that the the C code can be
loaded from S-PLUS. These “wrapped” functions replace the prototypes
developed purely in S-PLUS for phase 1. As expected, the conversion to C
has increased the computational speed considerably (we note, for example,
that the instantaneous maximum likelihood estimation of FD parameters
for a 512 point time series has decreased from an average of 180 seconds in
S-PLUS to approximately 0.25 seconds in C; a 720-fold increase in speed).

For every function in S-PLUS a help function has been written to aid the
user in understanding the code. The C code help is automatically generated
using in-house routines which port the header information to HTML and
LaTeX formats. Finally, for each S-PLUS function we have written so-
called “loop tests” which test both the functionality and values generated.
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Appendix A: S+Wavelets 2.0 Manual

The pages following this one contain the ‘beta’ version of S+ WAVELETS.
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Introduction

1.1 Advantages of New Wavelet Transforms

1.1.1 Discrete Wavelet Transforms

In this version of the S+Wavelets module we introduce a variety of new
discrete wavelet transforms based on those developed in [PWO00] and in
[Kin98, Kin99, Kin00]. Previous versions of the S+Wavelets module support
similar transforms, but there are some distinct differences between old and
new.

e Identification of boundary coefficients. For finite length time
series, there are a number of methods used to extend the bound-
aries of a sequence in order to preserve the length of the time se-
ries in the transform. The number of coefficients that are influenced
by these boundary treatments grows with the decomposition level.
It is important to keep track of these so-called “boundary” coefli-
cients when applying statistical measures to the wavelet transform
coefficients e.g. wavelet variance estimators. While former versions of
the S+Wavelets module offer a variety of boundary treatments, there
currently exists no methodology to track the corresponding boundary
coefficients. In the new S+Wavelets module, we have embedded func-
tionality to track the boundary coefficients, enabling us to calculate
cross-scale unbiased statistics on the transform coeflicients.

o Assurance of energy preservation. In orthonormal transforms,
the energy of the original time series is equal to that of the collec-
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tive transform coefficients. In forming certain statistics of the wavelet
transform coefficients, it is vital that the energy be preserved. To
guarantee energy preservation, the wavelet transforms in the new
S+Wavelets module impose a periodic boundary extension rule. Other
existing boundary extension treatments such as poly0, poly1, poly2,zero,
and reflection do not guarantee energy conservation in the transform.

Handling non-dyadic time series. A time series is dyadic if its
length is a power of two. The definition of a discrete wavelet trans-
form is typically based on the assumption that the time series is
dyadic and, in order to overcome this restriction, special techniques
must be used. In the former S+Wavelets modules, the wavelet trans-
forms handled non-dyadic time series in a way that made the number
of transform coefficients at a given level difficult for the user to pre-
dict. In the new S+Wavelets module, we use a novel treatment for
non-dyadic sequences that follows a simple rule applied only to the
transform coefficients corresponding to low pass filter operations, i.e.
the so-called scaling coefficients: if at any given decomposition level,
the number of scaling coefficients is odd, then the last scaling coeffi-
cient is preserved in a special crystal named extra. For reconstruction
(synthesis) operations, the extra scaling coefficients are simply put
back into place at the appropriate point in the reconstruction algo-
rithm. While this technique requires a bit more bookkeeping (on our
part), it does not impose any spurious energy in the transform coeffi-
cients. Furthermore, the number of coefficients at each level is easily
calculable.

Convolution style filtering. Prior to this version of S+Wavelets,
the default filtering style was correlation. In the new wavelet trans-
forms, the filtering style is convolution. Both are valid means of ob-
taining wavelet transform coefficients, but the convolution style has
the advantage of being easily related to the discrete Fourier trans-
form. The relation we speak of states that the convolution of a time
series and a filter in the time domain is equivalent to the (inverse
Fourier transform of) the product of the filter and time series in the
frequency domain.

We also introduce a new discrete wavelet transform to the S+Wavelets
module: the dual tree wavelet transform (DTWT) developed by Dr. N.G.
Kingsbury of the University of Cambridge. Like non-decimated wavelet
transforms, the DTWT is an over-complete transformation of the data,
producing more transform coefficients than that found in the original data.
The redundancy is a factor of 2 in one dimension, and 4 in two dimen-

sions.

By comparison, conventional non-decimated DWTs impose a J-fold

increase in the number of coefficients for (one-dimensional) time series,
where J is the decomposition level. The advantages of the DTWT are that
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it retains perfect reconstruction, achieves a good (approximate) degree of
shift invariance, has good directional selectivity, and has low noise ampli-
fication, all at the cost of a modest degree of redundancy. The DTWT is
available for both 1-D and 2-D transformations.

A number of promising applications of the DTWT have been reported
in the recent literature by Kingsbury and his co-workers. We summarize
several of these here as an indication of the potential and versatility of this
transform.

e In video coding, because transforms of shifted images are simply re-
lated, motion vectors between successive video frames may be esti-
mated by analysis in the transform domain [MK98].

e In image denoising, application of soft thresholding to the complex
wavelet coefficients produces results comparable to those obtained
using the non-decimated transform (MODWT), but with consider-
ably less computation [Kin98]. The denoising performance may be
enhanced by use of hidden Markov tree (HMT) methods [CRKO00].

e In texture analysis, the directional and shift-invariant features of the
DTWT make it ideal [HMK99, dRK99, HB00].

e In image classification, techniques can be based on multiscale tex-
ture and color feature vectors obtained from the DTWT [KNKF00,
RCBKO00, dRK00].

o In digital image watermarking, a promising method can be based on
the DTWT [LKO00)].

1.1.2 Continuous Wavelet Transforms

The new S+Wavelets contains two new continuous wavelet transforms: the
continuous wavelet transform (CWT) and the Gabor transform (2-D only).

1.2 Estimation of the Wavelet Variance

In this version of S+Wavelets, we introduce functionality to estimate the
wavelet variance of a time series and to provide corresponding confidence
intervals. The wavelet variance provides a way of analysing (decomposing)
the variance of a time series and is of interest for several reasons.

e The wavelet variance breaks up the variance of certain stochastic
processes into pieces that are associated with different scales. This
type of decomposition has considerable appeal for studying time series
that exhibit fluctuations over a range of different scales, as occurs
quite commonly in financial and geophysical time series.
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e The wavelet variance is closely related to the concept of the spec-
tral density function (SDF). While the SDF decomposes the variance
of a process into components that can be associated with particular
frequencies, the wavelet variance decomposes the variance into com-
ponents associated with particular scales. Since each scale can in turn
be related to a certain range of frequencies in the data (as opposed
to a single frequency), the wavelet variance often leads to a more
succinct decomposition that is easier to interpret.

¢ The wavelet variance is a useful substitute for the variance of a process
for certain processes with infinite variance or for a process whose
sample variance has poorly behaved sampling properties.

1.3 Wavelet-Based Analysis of Fractionally
Differenced Processes

Recently there has been wide-spread interest in the use of non-stationary
multi-scale fractal processes as models for environmental, biomedical and
financial time series. There are, however, a number of modeling and esti-
mation issues that have yet to be fully resolved. In the area of modeling
there is need for a flexible — yet tractable — class of models that are ca-
pable of describing the non-stationarities typically observed in recorded
measurements of (fractal) processes. The challenge is to develop models
that capture the salient features of fractal times series, yet do so in a rel-
atively simple manner. One such model is the a fractionally differenced
(FD) process. For certain fractal processes, an FD process model has many
advantages over conventional models (such as fractional Brownian motion
and fractional Gaussian noise models) including model flexibility, simplicity
and continuity over stationary-nonstationary model parameter regimes.
The S+Wavelets module utilizes novel wavelet-based techniques to esti-
mate the (possibly time-varying) FD model parameters over finite ranges
of scale. Wavelet methods have many advantages over other techniques:

e DECOMPOSITION BASED ON SCALE. Many real-world (fractal) phe-
nomena exhibit fluctuations at various temporal or spatial scales, e.g.
atmospheric turbulence measurements, financial market fluctuations,
and environmental time series to name a few. A wavelet transform
is a natural analyzer for such data since it transforms a time series
into coefficients that correspond to (differences and averages) of such
variations over a range of different scales.

e DECORRELATION OF TIME SERIES. Many fractal processes, such as
long-memory processes, are highly correlated. In this case, estimat-
ing the FD model parameters via a maximum likelihood estimator
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(MLE) is computationally intense, but is relatively efficient for un-
correlated fractal processes. Craigmile et al show that using a DWT
on correlated FD process realizations yields wavelet coefficients that
are approximately uncorrelated [CPG00a]. Thus, to make MLE of FD
model parameters practical, the DWT can be used as a preprocessive
measure to decorrelate correlated FD processes.

e LOCALIZED TIME AND SCALE CONTENT. Each wavelet coefficient is
localized in time, allowing us to track changes in the characteristics
of a time series at a particular scale as a function of time.

e SEPARATION OF NONLINEAR TRENDS FROM NOISE. The wavelet co-
efficients are inherently ‘blind’ (invariant) to nonlinear polynomial
trend contamination in the original time series [CPGOOb).

In addition to its FD estimation routines, the S+Wavelets module con-
tains functionality for simulating time-varying fractionally differenced (TVFD)
processes. TVFD processes can serve as useful models for certain time se-
ries whose statistical properties evolve over time. The TVFD functionality
developed for S+Wavelets has many advantages over other techniques:

e The FD model parameters are allowed to fluctuate as a function of
time. This is beneficial for modeling some real-world processes which
exhibit fluctuating stochastic fractal dynamics as time evolves.

e The TVFD routines generate mathematically “exact” realizations,
thus ensuring that, if we conducted a Monte Carlo experiment to
determine the properties of a statistic formed from a TVFD process,
our results will reflect the correct properties of the statistic rather
than the inaccuracies in the simulation technique.

o The range of supported TVFD model parameters exceeds that of
(related) model parameters for other techniques such as locally sta-
tionary processes [Pri65, Dah97, MPZ98, CHT98, Mal99] and locally
self-similar process [GF93, FG94, WCS01]. Although these classes
have served as successful models for some time series, the correspond-
ing restricted model parameter range are not reasonable for certain
real-world time series, whereas the range for our TVFD simulator is
appropriate for most (if not all) real-world phenomena.

1.4 Organization of Supplement
The remainder of this S+Wavelets module is organized as follows:

In §2 we introduce the filter functions used to generate suitable wavelet
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and scaling filters for use in discrete wavelet transforms. In §3 we discuss
both one-dimensional and two-dimensional discrete wavelet transforms and
the parameters needed to fine-tune their output. In §4 we introduce the
concept of wavelet variance and discuss its ramifications on scale selection
and FD model validation. In §5 we introduce FD model simulation and
estimation functions and presént show its potential in analyzing both sim-
ulated and physical stochastic fractal process realizations. In Appendix A
and Appendix B we provide the data and function references, respectively,
for the S+Wavelets module. In Appendix C we define the object-oriented
design of the S+Wavelets module and include a description of classes and
corresponding methods.




2

Filter Functions

2.1 What is a Wavelet Filter?

Qualitatively speaking, a function 1(-) defined over the entire real axis is
called a wavelet (or ‘short wave’) if ¢(t) — 0 as t — oo. For a contrasting
example, consider a function whose value at ¢ is given by cos(2xt/10).
Because this function has no tendency to get smaller as t gets larger and
larger, we can call it a ‘long wave.” By judiciously defining a wavelet and
by comparing it to various portions of another continuous function of ¢, we
can expose or extract variations in portions of this second function over
the effective width (i.e., scale or duration) of the wavelet.

In practical applications, we invariably deal with sequences of values
indexed by integers rather than functions defined over the entire real axis
(such sequences are often called ‘time series’ for convenience). In place of
actual wavelets, we use short sequences of values referred to as wavelet
filters. The number of values in the sequence is called the width of the
wavelet filter. For technical reasons, this width, denoted by L, must be an
even integer. We use the notation {h}£5! (or just {h}) to denote a wavelet
filter, where h; is called a filter coefficient (the set of all filter coefficients is
commonly called the impulse response sequence). Quantitatively, a wavelet
filter must meet the following three mathematical conditions.

1. The filter coefficients must sum to zero:

L-1
> h=0.
=0
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2. The coefficients must have unit energy:

3. The coefficients must be orthogonal to their even shifts:

L-1
Z hihiyor =0,
1=0

where k is any nonzero integer, and for convenience we define h; =0
forl<Qorl>L.

Together the second and third conditions are called the orthonormality
condition.

The wavelet filter is used in combination with a scaling filter to calculate
a discrete wavelet transform. The wavelet filter coefficients h; are related to
the scaling filter coefficients g; through a quadrature mirror filter (QMF)
relationship, namely,

g =" "R, 1=0,...,L-1.

Given a scaling filter, we can obtain the corresponding wavelet filter via
hy = (—=1)'g—1-1. The scaling filter satisfies the same orthonormality con-
dition as the wavelet filter, but, rather than summing to zero, we have
3, 9t = /2. The scaling filter and wavelet filter are sometimes referred to
in wavelet literature as the ‘father wavelet filter’ and ‘the mother wavelet
filter.’

2.2 Supported Wavelet Filters

There are several families of wavelet filters whose members satisfy the three
mathematical conditions stated above. The following four families are sup-
ported in S+Wavelets.

e EXTREMAL PHASE (d): Filters in this family are designed such
that, if we use an impulse as the input, then the output from the
filter will have a cumulative energy that increases as fast as possible.
Extremal phase filters are also know as ‘daublets’ or ‘minimum phase’
filters.

e LEAST ASYMMETRIC (s): Filters in this family are smoother and
more symmetric looking than extremal phase filters, but they have
exactly the same gain functions (i.e., the magnitudes of their discrete
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Fourier transforms). These filters are approximations to linear phase
filters (a filter with linear phase is desireable because we can then
match up patterns going into the filter with those coming out). They
are also known as ‘symmlets’.

e BEST LOCALIZED (1): These filters have the same gain functions
are the extremal phase and least asymmetric filters. Like the latter,
they are intended to be as symmetric as possible, but they use a
slightly different definition of what constitutes good symmetry.

o COIFLET (c): These filters have different gain functions from the
other three families and are much better approximations to linear
phase filters.

The extremal phase, least asymmetric and coiflet families of wavelet fil-
ters are discussed in detail in the pioneering book on wavelets by Ingrid
Daubechies [Dau92]. She coined the term ‘coiflet’ in honor of Ronald Coif-
man (another prominent ‘waveletician’), to whom she credits the idea for
the family. The best localized family is due to Doroslovacki [Dor98].

2.3 The WaveletDaubechies Filter Object

The wavDaubechies function retrieves wavelet and scaling filters and returns
them in the form of an object of class WaveletDaubechies. The following
methods can be used to view, summarize and access the data contained in
a WaveletDaubechies object.

Summary Operator Methods:

print Prints the following information about the wavelet and
scaling filters:

e the filter type (e.g. ‘Extremal Phase’)
o the width L of the wavelet and scaling filters

e a logical flag stating the normalization status of
the filters

e the coefficients (i.e., impulse response sequence)
for the filters

plot Plots the coefficients for wavelet and scaling filters
or components of their frequency response functions
(these functions are the discrete Fourier transforms
of the filter coefficients and are also commonly called
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the transfer functions). The plot function takes a sec-
ond argument (type), which should be set to the string
"time”, "gain", or " phase” to plot, respectively, the fil-
ter coefficients, the gain function (i.e., the modulus of
the frequency response function) and the phase of the

frequency response function.

Data Access Methods

$ Use to access specific components of the class object.
A list of accessible components can be generated using
the names function.

For example, if s8 is an object of class WaveletDaubechies,
then names(s8) will give a list of its components. Two
of these components are wavelet and scaling, so s8§wavelet
will return the wavelet filter coefficients, while s8§scaling
will return the scaling filter coefficients.

2.4 An Example: Retrieving Wavelet and Scaling
Filters

To retrieve a particular wavelet filter, use the wavDaubechies function along
with a string denoting the desired filter. This string should start with either
d (for extremal phase filters, i.e., daublets), s (for least asymmetric filters,
i.e., symlets), | (for best localized filters) or ¢ (for coiflets) and should be
followed by the width of the desired filter. The wavDaubechies function also
takes an optional second argument, which is a logical flag used to denote
whether the filters should be unnormalized or normalized (the default).
Filters with unit energy are not considered to be normalized — normalized
filters have energies of 0.5 and are used with the ‘maximal overlap’ version
of the discrete wavelet transform described in §3.2)
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> s8 <- wavDaubechies("s8", norm=F)
> s8

Filter type: Least Asymmetric
Filter length: 8

Filter normalized: FALSE

Wavelet filter:
[1] 0.03222310 0.01260397 -0.09921954 -0.29785780
{5] 0.80373875 -0.49761867 -0.02963553 0.07576571

Scaling filter:
[1] -0.07576571 -0.02963553 0.49761867 0.80373875
[5] 0.29785780 -0.09921954 -0.01260397 0.03222310

The wavelet and scaling filter coefficients are returned embedded in an
object of class WaveletDaubechies. As shown in the example above, the
print method for this class lists exactly what filters these are and their
normalization status, following which it gives the coefficients (i.e., impulse
response sequence) for both filters. As an example of accessing one of the
components in the object s8, let us check that the wavelet filter coefficients
have unit energy:

> sum(s8%wavelet”2)

[1] 1

Use the plot method to view the filter coefficients (i.e., impulse response
sequence) and the components of their frequency response functions:

> plot(wavDaubechies("s20", norm=F), type="time")
> plot(wavDaubechies("s20", norm=F), type="gain")
> plot(wavDaubechies("s20", norm=F), type="phase")

The gain functions reveal that the wavelet and scaling filters are high and
low pass filters, respectively.
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IMPULSE RESPONSE: Least Asymmetric, length = 20
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FIGURE 2.1. Filter coefficients (i.e., impulse response sequence) for Daubechies
least asymmetric wavelet and scaling filters of width L = 20.
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FREQUENCY RESPONSE GAIN: Least Asymmetric, length = 20
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FIGURE 2.2. Gain functions (i.e., modulus of the frequency response functions)
for Daubechies least asymmetric wavelet and scaling filter of width L = 20.
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FREQUENCY RESPONSE PHASE: Least Asymmetric, length = 20
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FIGURE 2.3. Phase of frequency response functions for Daubechies least asym-
metric wavelet and scaling filter of width L = 20. The vertical axis is expressed
in degrees.
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Wavelet Transforms

3.1 The Discrete Wavelet Transform

3.1.1 Qverview

The wavelet filter {i;} and scaling filter {g;} discussed in §2 are used to cre-
ate a discrete wavelet transform (DWT), which maps a time series from its
original representation in the time domain to an alternative representation
in the time-scale domain. The DWT is implemented in the time domain by
recursively applying both filters to the time series in a ‘pyramid’ algorithm.
Each recursive use of these filters yields one level of wavelet coefficients and
scaling coefficients. If we stop after reaching a particular level, say J, and if
the sample size N of our time series can be expressed as an integer multiple
of 27, the DWT consists of the wavelet coefficients for levels j = 1,2,...,J
along with the scaling coefficients for level J. If we let dj and sj repre-
sent the collection of wavelet and scaling coefficients, respectively, at level
7, we can represent the DWT for level J as [d1}d2]... |dJ|sJ]. We use the
term ‘crystal’ to refer to any one of the components dl, d2, ...dJ, sJ in
the DWT; i.e., a level J DWT consists of J + 1 crystals, J of which are
the wavelet coefficients at the J different levels, and one of which contains
the scaling coefficients for level J. (If N is not an integer multiple of 27,
an extra cystral is needed. This consists of at most one scaling coefficient
from levels j = 1,...,J — 1. In this case, we can represent the DWT as
[d1|d2|...|dJ|s)]extra].)

As an example, let’s consider a linear chirp, i.e., a sinusoid whose fre-
quency increases linearly with time.
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FIGURE 3.1. A 1024 point sample of a linear chirp.
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> linchirp <- make.signal( "linchirp", n=1024 )
> plot( linchirp, type="1", ylab="linchirp" )

Figure 3.1 shows the resulting plot. You can use the wavDWT function to
calculate a level J = 4 DWT using the s8 wavelet filter, i.e., the Daubechies
least asymmetric filter of width L = 8.

> dwt.linchirp <- wavDWT( linchirp, wavelet="s8", n.levels=4 )

> dwt.linchirp

Discrete Wavelet Transform of linchirp
Wavelet: s8

Length of series: 1024

Number of levels: 4

Boundary correction rule: periodic
Filtering technique: convolution

Shifted for approximate zero phase: FALSE
Crystals: dl1 d2 d3 d4 s4

To plot the DWT, simply invoke the plot method:
> plot( dwt.linchirp )

Figure 3.2 is a plot of the elements of each crystal versus a nominal position
(positions 0 to 1024 correspond to times 0 to 1; §3.1.4 below discusses a
refinement for associating the values in each crystal with a particular time).
If we compare this figure with Fig. 3.1, we see that, as the level of the
wavelet coefficients increases, the positions of its largest elements are shifted
toward the beginning of the series. As we discuss in §3.1.3 below, this is in
keeping with a band-pass interpretation of the DWT in which the high level
wavelet coeficients are capturing information in a time series over certain
bands of low frequencies. The frequencies in our linear chirp are increasing
with time, which implies that the positions of large wavelet coefficients
should shift to the left as the level increases — this is in agreement with
Fig. 3.2. Similarly the scaling coefficients capture the very lowest frequency
information about our time series, which is also consistent with what is
shown in Fig. 3.2.

We can easily access the components (i.e., crystals) of a DWT. For ex-
ample, the wavelet coefficients for level 4 are in the crystal named d4. You
can access these coefficients by using dwt.linchirp[["d4"]]. This is done in
the following command, in which we calculate the ‘energy’ in the level 4
wavelet coefficients (i.e., the sum of squares of all the elements in d4).
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DWT of linchirp using s8 filters
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FIGURE 3.2. Discrete wavelet transform of a linear chirp.
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> sum( dwt.linchirp{["d4"]1]"2)
[1] 130.638

The energy in particular crystals is of interest because the DWT is an
‘energy preserving transform’; i.e., the energy in all the DW'T coefficients
is equal to the energy in the original time series. We can verify that this is
true numerically here.

> sum( unlist(lapply(dwt.linchirp$data,
+ function(x) sum(x"2))) )

[1] 500.6865

> sum( linchirp~2 )

[1] 500.6865

The fact that the DWT preserves energy means that we can use it to
analyze the variance in a time series (this fact is exploited in detail in §4).

In addition to the plot method, we can use the summary method to get
some summary statistics about the DWT coefficients.
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> summary( dwt.linchirp )

Min 1Q Median 3Q Max Mean SD Var
dl -0.144 -0.005 0.000 0.005 0.130 0.000 0.037 0.001
d2 -1.265 -0.103 0.000 0.091 1.271 0.001 0.425 0.181
d3 -2.529 -0.615 -0.001 0.603 2.629 -0.035 1.236 1.529
d4 -3.585 -0.820 -0.001 0.171 3.212 -0.224 1.422 2.023
s4 -3.711 -0.120 0.004 0.252 4.028 0.120 1.426 2.033

MAD Energy %
dl 0.008 0.141
d2 0.146 9.194
d3 0.918 38.804
d4 0.661 26.092
s4 0.283 25.769

Energy Distribution:

1st 1% 2% 3% 4 5% 10%
Energy % 3.240 25.682 39.772 51.277 61.146 69.638 89.481
|coeffs| 4.028 2.966 2.494 2.3156 2.110 1.865 1.042
#coeffs 1.000 11.000 21.000 31.000 41.000 52.000 103.000

159, 20% 25/
Energy % 96.233 98.793 99.589
|coeffs| 0.637 0.361 0.213
#coeffs 154.000 205.000 256.000

The first block of the summary gives some statistics related to the empirical
distribution of the values within each crystal (minimum value, first quar-
tile, median (i.e., second quartile), third quartile, maximum value, mean,
standard deviaton, sample variance and the median absolute deviation),
along with the percentage of the total energy in the time series trapped
within each crystal. You can also look at the energy distribution in the
form of two graphs that are created by supplying a type argument to the
plot function:

> plot( dwt.linchirp, type="energy" )

The result (Fig. 3.3) is a bar plot showing the energy in each crystal and
a pie chart depicting the proportion of the total energy trapped by each
crystal.

The summary method also gives us a look at how the energy is distributed
across all the DWT coefficients, i.e., outside of their classification within
particular crystals. An examination of the last part of the summary above
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FIGURE 3.3. Energy distribution of linear chirp DWT.
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shows that the coefficient with the largest magnitude (4.028) accounts for
3.2% of the energy in the time series. We also see that 15% of the coefficients
contain 96.2% of the energy and that the magnitudes of these coefficients
are bounded below by 0.637 (there are 154 coefficients with magnitudes
greater than or equal to this number). A summary such as this is helpful
in determining how well the DWT succinctly captures the salient features
in a time series

8.1.2 The DWT in the time domain

The DWT can be calculated by processing the data using a filter cascade,
where a wavelet filter {h;} and its associated scaling filter {g:} are used in
a ‘pyramid’ algorithm to decompose the time series. To generate the first
level of coefficients, the original data is filtered by convolving it separately
with the wavelet and scaling filters. Both filter outputs are then decimated
by a factor of two (i.e., every other point is thrown out), and the remaining
filter outputs are defined as the unit level (j = 1) wavelet and scaling
coefficients. For the second level (j = 2), the same filtering/decimation
scheme is applied, but now the unit level scaling coefficients are used as
the input to the filters. This algorithm can be repeated to obtain higher
Jevel coefficients. Thus, at the jth level, the inputs to the wavelet and
scaling filters are the scaling coefficients from the previous level (G -1),
and the outputs are the jth level wavelet and scaling coefficients.
Mathematically we can describe the DWT as follows. Let (X}  bea
uniformly sampled real-valued time series consisting of IV observations, the
tth of which is denoted by X; (by uniformily sampled, we mean that the
time at which we collected the tth observation can be expressed as to+t Ay,
where to is the time at which we observed X, and A¢ > 0 is the sampling
time between observations). Define so ¢ = X; to be the zeroth level scaling
coefficients. Starting with level j = 1 and recursively continuing on for

levels j = 2,...,J, we can calculate the DWT wavelet coefficients via
L-1
djt = Z hiSj—12t41-1 mod Nj_1» t=0,...,N; — 1,
1=0

and the DWT scaling coefficients via

L-1
S¢S D Qi8j-12t41-1mod Ny—y, £ =000, Nj =1,
=0

where N; = | N/2] (here |z] refers to the largest integer that is less than
or equal to ). Here are four comments about the above two equations.

1. We are using ‘modulo’ arithmetic to specify which scaling coefhi-
cients are to be used in forming the above summations. Thus, if
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0 <2t+1-1< Nj_; — 1, the expression ‘2t + 1 — { mod N;j—,’
is taken to be equal to 2t + 1 — 1; if this condition is not true, then
the expression is taken to be 2t +1—1+nN;_1, where nlV;_, is the
unique integer multiple of Nj_; such that 0 <2t +1—1+nN;_; <
Nj_; — 1. For indices ¢ such that 2t + 1 — I mod Nj_; is not the
same integer as 2t + 1 — I, the values of d;; and s;. are formed
by combining together some values from the beginning of the se-
quence of scaling coefficients (sj-1,0,...) with some values from the
end (...,8j-1,N;_,~1)- In effect, we are treating the scaling coeffi-
cients as if they were ‘circular’ for the purposes of creating the filter
outputs; i.e., we replace the unavailable values ...,s;-1,-2,8j-1,-1
with ...,8j-1,N;_;-2,8j—1,N;_;—1- We use the terminology ‘bound-
ary coefficient’ to refer to any coefficient whose computation involves
the circularity assumption in some manner. Because the physical in-
terpretation of boundary coefficients can be problematic, there are
special tools and displays in S+Wavelets that allow us to access and
delineate these coefficients. Coefficients that are not boundary co-
efficients are deemed to be ‘interior’ coefficients (or ‘nonboundary’
coefficients).

2. In our description of the pyramid algorithm above, we noted that the
jth wavelet (scaling, respectively) coefficients are formed by filtering
the scaling coefficients from level j—1 with the wavelet (scaling) filter,
after which we then decimate the filter outputs by a factor two. In
the above equations, this decimation is accomplished by use of ‘2¢’ in
the indices to the input scaling coefficients.

3. The maximum level J that we can use is given by [log,(/N)]. When
J is set to this level, there will be exactly one wavelet and one scaling
coefficient (djo and sj). If the sample size N is equal to 27, then
sJ,0 is proportional to the sample mean of the time series (for details,
see Exercise [97] of Percival and Walden, 2000).

4. To maintain backward compatibility with version 1.0 of S+Wavelets,
we are using dj; and sj; to denote jth level wavelet and scaling
coeffients. This notation differs from what is used in Percival and
Walden (2000), where these coefficients are denoted by W;¢ and Vj;.

3.1.3 The DWT in the frequency domain

While the pyramid algorithm allows us to compute the DWT efficiently, we
could in principle also obtain the wavelet coefficients for a given level 5 by
using a single filter, which we call the jth level wavelet filter; likewise, we
can obtain the jth level scaling coefficients by using the jth level scaling
filter. Examination of the frequency domain properties of these jth level
filters leads to an interpretation of the DWT as an ‘octave band’ filter bank.
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The DWT can be calculated by processing the data using a filter bank,
where the wavelet and scaling filters are used in a recursive (pyramid)
algorithm to decompose the time series. To generate the first level transform
coefficients, the original data is filtered by convolving it with both the
wavelet and scaling filters (§2). The results are then decimated by a factor
of two, where every other point is thrown out, and the remaining coefficients
are defined as the level-one wavelet and scaling coefficients. For the second
level, the same filtering-decimation scheme is applied (only) to the scaling
coefficients. This algorithm can be repeated for higher decomposition levels
until the number of wavelet and scaling coefficients is unity (and cannot be
broken down any further).

We can replicate this approach by processing the original data with a set
of scaled (amplitude reduced) and dilated (time stretched) versions of the
wavelet and scaling filters, one filter set per level of the transform. The ad-
vantage in this approach is that the gain functions (frequency responses) of
the resulting filter sets clearly show the bandpass nature of the filter bank.
To illustrate this point, use the wavGain function to obtain the frequency
response of the level j Daubechies 8-tap least asymmetric filters wavelet
filter (H;(f)) and scaling filter (G;(f)) forj=1,...,5:

> gain <- wavGain( "s8", n.level = 5 )
> gain

Gain functions for s8 filters

Number of levels: 5
Number of Fourier frequencies: 1024
Filters normalized: TRUE

The result is an object of class WaveletGain. You can plot the squared gain
functions by invoking the plot method:

> plot( gain )

Figure 3.4 shows the result. The vertical lines in these plots define the
octaves over which the wavelet filters are associated: the wavelet filter for
level j is associated with an approximate bandpass filter whose passband
frequencies are f € [1/27%1,1/27]. Similarly, the scaling coefficients filter at
level j is associated with an approximate bandpass filter whose passband
frequencies are f € [0,1/2711].

Using these scaled and dilated filter sets, we can calculate the DWT
wavelet coefficients at level j via

d; =4 2(F~H(H; (HX()))
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where | K( - ) is the downsample operator (every K th point is kept),
F=1( . ) is the inverse discrete Fourier transform operator, X (f) is the
frequency response of the the original time series (X}t and f = k/N
for k=0,...,N — 1. Similarly, the DWT scaling coefficients at level j can
be calculated using

s; =4 2(F G (NX())-

Normalized Wavelet Filter { s8 )
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FIGURE 3.4. Squared gain functions of Daubechies least asymmetric 8-tap filters
for levels j =1,...,5.

3.1.4 Interpretation of DWT coefficients

As noted in §2, the wavelet coefficients are proportional to differences be-
tween local averages of the data taken on a scale proportional to the effec-
tive filter width. The wavelet (and scaling) filter is scaled at each level j of
the wavelet transform such that its effective scale is

Tj = 2j—lAt

where A, is the sampling interval of X, (assumed from this point forward
to be unity unless specified otherwise). Similarly, the scaling coefficients
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at level j are proportional to the local average of the data taken at scale
7;. Using these dual interpretations, the wavelet transform allows us to
explore the variability at different scales of the data, a sort of variably-
sized mathematical microscope.

Each wavelet and scaling coefficient is typically also localized in time;
i.e., except at the very largest scales, each coefficient is formed using a
limited portion of the time series. By studying the phase functions that
are associated with the jth level equivalent filters {h;;} and {g;:}, it is
possible to associate a time with each coefficient, This association makes
most sense when filters have what is known in the engineering literature as
linear phase. Within the class of filters that yield an orthonornal DWT, it
is not possible to have filters with exact linear phase, but, by construction,
the symmlet and coiflet filters are approximately linear phase filters. If
approximate linear phase filters are used in the DWT, then the transform
coefficients can be shifted (circularly permuted) so that they align with
events in the original time series; i.e., they are shifted for approximate
zero phase. To do so, you can use the wavShift function as in the following
example:

> wavShift( dwt.linchirp )

Discrete Wavelet Transform of linchirp
Wavelet: s8

Length of series: 1024

Number of levels: 4

Boundary correction rule: periedic
Filtering technique: convolution
Shifted for approximate zero phase: TRUE
Crystals: di d2 d3 d4 s4

The function wavShift returns an update version of dwt.linchirp containing
cystals that have been shifted so that they can be matched up in time with
events in the original time series. This fact is reflected in the next to last
line above, where it is noted that the crystals have been shifted to achieve
approximate zero phase. To see the shifts, you can use the plot method on
the object created by wavShift:

> plot( wavShift(dwt.linchirp) )

Figure 3.5 shows the result. The shift used for each crystal appears next to
each crystal name. A negative shift implies an advance (or circular shift to
the left) of the data.

If approximate linear phase filters are used in the DWT, then the trans-
form coefficients can be shifted (circularly permuted) so that they align
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DWT of linchirp using s8 filters
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FIGURE 3.5. The DWT of the linchirp sequence circularly shifted for approxi-
mate zero phase.
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with events in the original time series, i.e. they are shifted for approximate
zero phase. The shift factors for Daubechies coiflet or least asymmetric
(symmlet) families may be calculated via the wavZeroPhase function.

> wavZeroPhase( wavelet = "s8", levels = 1:4 )

$dwt:

di d2 d3 d4 s1 s2 s3 s4

-2 -2 -3-3-1-2-2-2

$modut : ‘

dl d2 d3 d4 sl s2 s3 s4

-4 -11 -25 -53 -3 -9 -21 -45

$dupt :

wi.0 wi.1 w2.0 w2.1 w2.2 w2.3 w3.0 w3.1 w3.2 w3.3 w3.4
-1 -2 -2 -2 -3 -2 -2 -3 -3 -2 -3

w3.5 w3.6 w3.7 wa.0 w4.1 w4.2 w4.3 wd.4 w4.5 wid.6 wa.7
-3 -3 -2 -2 -3 -3 -3 -3 -3 -3 -2

wi.8 wa.9 wa.10 w4.11 w4.12 w4.13 w4.14 w4.15
-3 -3 -3 -3 -3 -3 -3 -2

$modwpt:

wl.0 wi.1 w2.0 w2.1 w2.2 w2.3 w3.0 w3.1 w3.2 w3.3 w3.4
-3 -4 -9 -11 -12 -10 -21 -25 -27 -23 ~-24

w3.5 w3.6 w3.7 w4.0 wa.1 w4.2 wa.3 wd.4 wa.5 wad.6 wa.7
-28 -26 -22 -45 -53 -57 -49 -b1 -569 -B65 -47

wh.8 wa.9 wa.10 wa.11 w4.12 w4.13 w4.14 w4.15
-48 -56 -60 -52 -50 -58 -b4 -46

The wavZeroPhase function returns the shifts for the DWT as well as other
| transforms. You could use these shift factors to manually rotate each crys-
| tal appropriately, but a more convenient means is through the wavShift
function.
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> wavShift( dwt.chirp )

Discrete Wavelet Transform of linchirp
Wavelet: s8

Length of series: 2048

Number of levels: 4

Boundary correction rule: periodic
Filtering technique: convolution
Shifted for approximate zero phase: TRUE
Crystals: d1 d2 d3 d4 s4

Notice that the display method now indicates that the crystals have been
shifted for zero phase. To see the shifts, use the plot method as usual:

> plot( wavShift(dwt.chirp) )

Figure 3.5 shows the result. The shift used for each crystal appears next to
each crystal name. A negative shift implies an advance (or circular shift to
the left) of the data.

3.1.5 The WaveletTransform object

The wavDWT function calculates the DWT of a real-valued uniformly-
sampled time series and returns an object of class Wavelet Transform. Several
methods are available to the user to view, summarize, and access the data
contained in a WaveletTransform object:

Summary Operator Methods:

print Prints useful information regarding the wavelet trans-
form including:
e Type of wavelet transform.
e Information regarding the filter set.
e Number of decomposition levels.
¢ Boundary extension rule.
¢ Filtering technique (convolution or correlation).

e Whether or not the transform coefficients have
been shifted for zero phase (only suitable for coiflet
and symmlet filters).

o The crystal names.
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plot

eda.plot

summary

Plots the transform coefficients. If the transform is
shifted for zero phase, the shift factor appears adjacent
to the crystal name. Use the string “energy” as a value
for the optional type argument to display an energy
distribution plot of the crystals.

Extendend data analysis plot displaying the trans-
form, crystal energy distribution, and coefficient dis-
tribution

Displays a statistical summary of the transform data.

Transform Operator Methods

mrd
mra
reconstruct

wavShift

wavDetail

Perform a multiresolution decomposition of the data.
Perform a multiresolution analysis of the data.
Reconstructs the time series via an inverse transform.

Circularly shift each crystal to achieve approximate
zero phase. (only suitable for coiflet and symmlet fil-
ters).

Calculate the detail coefficients for specified crystals.

Data Access Methods

[l

Access a subset of all crystals contained in a a Wavelet-
Transform object. For example, to obtain the first and
second level wavelet crystals of a MODWT or DWT
object X, use either X[1:2] or X[c("d1","d2")]. While
the former is more compact, the latter is preferred be-
cause of it leaves no doubt as to which crystals are
to be extracted and does not rely on any particular
ordering of the crystals in the object.

Access an individual crystal of a WaveletTransform ob-
ject. For example, to obtain the second level wavelet
crystal of a MODWT or DWT object X, use either
X[[2]] or X[[“d2"]]. The result is a vector of transform
coefficients. If however multiple crystals are requested
(ala X[[c("d1","d2")]] for example), the result is an
S-PLUS list containing the requested crystals.
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$ Use to access specific components of the WaveletTrans-
form object. A list of accessible components can be
generated using the names function. One such com-
ponent is data which contains an S-PLUS list of all
wavelet transform crystals. This gives the user yet an-
other way to access specific transform crystal(s). For
example, if X is an object of class WaveletTransform,
the d2 crystal can be accessed via X$data$d2.

3.2 The Maximal Overlap Discrete Wavelet
Transform

Despite its popularity, the DWT has two practical limitations. The first
is the dyadic length requirement. While the DWT can be adapted to ac-
commodate arbitrary length sequences via, e.g., polynomial extensions of
the scaling coefficients, selecting an appropriate number of end points to
fit or the order of fit is not a trivial task. Other techniques can be used,
such as the odd-scaling coefficient storage system used for the wavDWT
function, but generally involve either complicated bookkeeping or are too
simple to accurately portray the dynamics of the scaling coefficients. The
second limitation is a sensitivity of the DWT to where we start recording
a time series; i.e., the decimation operation makes the DWT a non shift-
invariant transform so that circularly shifting the time series can alter the
entire DWT.

To overcome these limitations, we can use a non-decimated form of the
DWT, known as the maximal overlap DWT (MODWT), that has two main
advantages: (1) it handles arbitrary length sequences inherently and (2) cir-
cularly shifting the time series will result in an equivalent circular shift of
the MODWT coefficients. Additionally, the number of coefficients in each
scale is equal to the number of points in the original time series. This refined
slicing of the data in combination with the approximate zero phase prop-
erty of the least asymmetric filters allows us to calculate ‘instantaneous’
statistical measures of the data across scales (e.g. instantaneous fractionally
differenced process model parameters, see §5 for details).

3.2.1 Definition

Let X¢, t =0,1,..., N —1, represent a real-valued uniformly-sampled time
series, and let by and g;, 1 = 0,1,...,L — 1, be the coefficients for, respec-
tively, the wavelet and scaling filters of width L used by the DWT. To
preserve energy in the MODWT, we need to use rescaled versions of these
filters, which we define as follows:

hu=hi/y/2 and §i = g/ V2.




26 3. Wavelet Transforms

In order to define the MODWT for a given decomposition level j, we start
by defining the MODWT scaling coefficient 3o, at level j = 0 and time
index t to be equal to the value of the time series at index ¢t; i.e., 80t = X4,
t = 0,1,...,N — 1. The MODWT wavelet coefficients Jj'g and scaling
coefficients §;, for level j are defined recursively in terms of the scaling
coefficients for level j — 1 as follows:

L-1

dj¢ = hlsj-1,t—2i—1 {mod N
=0
L—1

Sj¢ = G15j-1,6-2i-1 I mod N>
=0

wheret=0,1,...,N — 1.

While the above is an efficient way of computing the MODWT wavelet
and scaling coefficients, it is also possible to obtain them directly from the
time series via the equations

L;j—1

djg = Zhj,lXt—lmodN
=0
L;j-1

St = Zéj,lXt-tmodN,
=0

where ﬁj,; and g1, 1 =0,1,...,L; — 1, are called the level j equivalent
MODWT wavelet and scaling filters. Both of these filters have a width
given by L; = (29 — 1)(L — 1) + 1. When j = 1, we have L; = Lihyy=h
and §;; = ;- These equivalent filters are mainly of interest for theoretical
developments and can be formulated using just the basic filters h; and g
(for details, see Section 5.4 of Percival and Walden, 2000).

8.2.2 An example: the MODWT of a linear chirp

To calculate a MODWT, use the wavMODWT function which, like the
wavDWT function, returns an object of class WaveletTransform. Here we
calculate a level 4 MODWT of the linchirp sequence using Daubechies 12-
tap Coiflet filters:
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> modwt.chirp <- wavMODWT( linchirp, wavelet = "ci2",
+ n.levels = 4 )
> modwt.chirp

Maximal Overlap Discrete Wavelet Transform of linchirp
Wavelet: c12

Length of series: 1024

Number of levels: 4

Boundary correction rule: periodic

Filtering technique: convolution

Shifted for approximate zero phase: FALSE

Crystals: di d2 d3 d4 s4

> plot( wavShift(modwt.chirp) )

Figure 3.6 shows the result shifted for zero-phase. A comparison of the
Fig. 3.5 and 3.6 shows that the (non-decimated) MODWT is visually
smoother than the (decimated) DWT. Unlike the DWT, the MODWT

MODWT of linchirp using c12 filters
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FIGURE 3.6. Maximal overlap discrete wavelet transform of a linear chirp shifted
for zero phase.
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is non-orthogonal and highly redundant. Like the DWT, the MODWT is
energy preserving. We can demonstrate this by taking the difference be-
tween the energy of the original time series and the MODWT:

> sum( linchirp~2 ) - sum( unlist(modwt.chirp$data)~2 )
[1] -2.807042e-09

We can also test the reconstruct function in a similar manner:

> vecnorm( reconstruct modwt.chirp) - linchirp )
[1] 3.565704e-10

The difference in reconstruction is very small and is due to roundoff error
in the computation. We can use the reconstruction method for more inter-
esting experiments such as synthesizing the MODWT after zeroing out the
d2 and d4 crystals:

modwt.chirp[c("d2","d4")] <- 0

recon <- reconstruct( modwt.chirp )

example <- list( linchirp=linchirp, synth=recon,
diff=linchirp-recon )

stack.plot( example )

vV 4 V VvV

The effect is to remove the high-frequency and mid-frequency components
of the chirp (Fig. 3.7).

3.3 The Discrete Wavelet Packet Transform

3.8.1 OQverview

As we discussed in §3.1.2, the wavelet and scaling filters are used to create
the DWT. This transform essentially takes a time series consisting of N
values and reexpresses it in the time-scale domain in terms of N DWT
coefficients. There are two types of DWT coefficients, namely, wavelet co-
efficients (encapsulating information about changes in weighted averages
at different scales) and scaling coefficients (related to weighted averages).
These filters are used in tandem in the pyramid algorithm. Thus, letting
j =1,...,J and starting with the definition that the zeroth level scaling
coefficients are given by the time series itself, we take the level j — 1 scal-
ing coefficients and transforms them into wavelet and scaling coefficients
of level j using, respectively, the wavelet and scaling coefficients. After J
iterations of the pyramid algorithm, the DWT consists of J + 1 crystals
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FIGURE 3.7. A denoising example. The top plot is the original linchirp sequence.
The middle plot is the reconstruction of the MODWT of the linchirp sequence
with the d1 and d3 crystals zeroed out. The final plot is the difference between
the synthesis and the original sequence.
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(components), namely, the wavelet coefficients from levels j = 1,...,J and
the scaling coefficients from level J.

In this scheme, once the wavelet coefficients are created, we leave them
alone and do not subject them to any further transformations. If, however,
we decide to treat the level j wavelet coefficients in a manner analogous
to scaling coefficients, we can obtain what is know as a discrete wavelet
packet transform (DWPT). A level j DWPT consists of 27 crystals, each of
which contains N/27 values, where N is the sample size of the time series
(for the purposes of this discussion, we assume that N is a power of two,
but in fact the DWPT in S+Wavelets can handle arbitrary sample sizes).

As a simple example, let us return to the linear chirp we created and
stored in linchirp (Fig. 3.1).

8.8.2 The DWPT in the time domain

Level O w0.0

Level 1 wl.0 IR ;wl',_l,;':":i[.,
Level 2 w2.0 w2l w2.2 w2.3
Level 3 |w3.0 w31 |w32 |w33 [w34 |w3.5 [w3.6 [w3.7

FIGURE 3.8. Wavelet packet table with 3 decomposition levels

The algorithm that dictates how we go from level j to level j + 1 says that
we take each crystal and subject its contents to both a wavelet filter and
a scaling filter, yielding two new crystals that form part of the level 7 +1
DWPT.

We can illustrate the DWPT algorithm with the help of Fig. 3.8, which
shows the creation of DWPTs of levels 1, 2 and 3.

3.8.8 The DWPT in the frequency domain

3.3.4 The WaveletPacket Object

The wavDWPT and wavMODWPT functions calculate the DWPT and MOD-
WPT, repsectively, of a real-valued uniformly-sampled time series and re-
turns an object of class WaveletPacket. Methods are available to the user
to view and summarize the data contained in a WaveletPacket object:

Summary Operator Methods:

display Prints useful information regarding the wavelet packet
transform including:

e Type of wavelet packet transform.




plot

3.3 The Discrete Wavelet Packet Transform 31

¢ Information regarding the filter set.
e Number of decomposition levels.

Boundary extension rule.

Filtering technique (convolution or correlation).

The crystal names.

Plots the transform coefficients.

Transform Operator Methods

mrd

mra

reconstruct

wavShift

wavDetail

Perform a multiresolution decomposition of the data.
Perform a multiresolution analysis of the data.
Reconstructs the time series via an inverse transform.

Circularly shift each crystal to achieve approximate
zero phase. (only suitable for coiflet and symmlet fil-
ters).

Calculate the detail coefficients for specified crystals.

Data Access Methods

[l

Access a subset of all crystals contained in a a Wavelet-
Packet object. For example, to obtain the first and sec-
ond level wavelet crystals of a MODWPT or DWPT
object X, use X[level = 1:2]. Individual crystals may
be accessed as we using the crystal name(s) as an in-
put ala X[c("w1.0","w3.1")] for example. In all cases,
the original WaveletPacket object is returned with a
subset of the original crystals.

Access an individual crystal of a WaveletPacket ob-
ject. For example, to obtain the node correpsonding
to level 2 and oscillation index 3 of a WaveletPacket
object X, use X[[*w3.2"]]. The result is a vector of
transform coefficients. If however multiple crystals are
requested (ala X[[c("w3.0",“w1.1")]] for example), the
result is an S-PLUS list containing the requested crys-
tals. In all cases, only the specified transform coeffi-
cients are returned, i.e. all other components of the
original WaveletPacket object are excluded.
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$ Use to access specific components of the WaveletPacket
object. A list of accessible components can be gener-
ated using the names function. One such component
is data which contains an S-PLUS list of all wavelet
transform crystals. This gives the user yet another way
to access specific transform crystal(s). For example, if
X is an object of class WaveletPacket, the w3.0 crystal
can be accessed via X$data$w3.0.

3.4 The Maximal Overlap Wavelet Packet
Transform

The MODWT discussed in §3.2 can be easily extended to the mazimal over-
lap discrete wavelet packet transform (MODWPT). The MODWPT is seen
as a collection of non-orthogonal transforms. Each level of the transform is
associated with a level j, where the j th level MODWPT decomposes the fre-
quency interval [0, 1/2] into 27 uniform divisions. Similar to the Short-Time
Fourier Transform, the MODWPT is seen as a time-frequency decomposi-
tion because it decomposes a time series into crystals such that each crystal
is associated with a particular range of frequencies and each coefficient of
a crystal corresponds to to a particular time.

3.4.1 Definition

Given j,n,t are the decomposition level, local node index, and time index,
respectively, the MODWPT is given by

L-1
Wint = Z UntWi—1,|n/2],t—25-1 L mod N
=0

The variable L is the length of the filters defined by

Upy = a/v/2ifnmod4=0o0r3
= Mh/y2ifnmod4d=1o0r2 forl=0,...,L—-1

where g; and h; are the scaling filter and wavelet filter, respectively. By
definition, Wo o = X where {X;} is the original time series.
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3.4.2 An ezample: MODWPT of a linear chirp

> modwpt.chirp <- wavMODWPT( linchirp, wavelet = "s8",
+ n.levels = 3 )
> modwpt.chirp

Maximal Overlap Discrete Wavelet Packet Transform of linchirp
Wavelet: s8

Length of series: 1024

Number of levels: 3

Boundary correction rule: periodic

Filtering technique: convolution

Shifted for approximate zero phase: FALSE

Crystals:

"wo.oﬂ Ilwl.oll l|w1.1||

"w2.0|l "W2.1" l'w2'2”

||w2'3l| llws'oll "ws.lll

I|w3.2|l llw3.3" ||w3.4ll
. (15 bases)

> plot( modwpt.chirp )

The crystals are order ala wj.n where j is the decomposition level and
n is the node index for n = 0,...,27 — 1. A crystal wj.n corresponds to
the normalized frequency range [n/2/!, (n+1)/2711]. For example, crystal
w3.2 corresponds to the frequency interval [1/8, 3/16]. Figure 3.9 shows the
MODWPT of the linear chirp out to three levels.

3.5 Multiresolution Decomposition and Analysis

Multiresolution decomposition (MRD) involves breaking down a time se-
ries or image into its fundamental components. Each component contains
information related to the variations in the original data at a certain scale.
Summing all of the components together will give you the original data.
The process of successively summing the data based on its MRD is known
as multiresolution analysis (MRA). Summing only a few of the components
removes those portions deemed undesirable in the data and can be used as
a very effective ‘denoising’ tool. Consider, for example, the following MRD
of an electrocardiogram signal using the MODWT:
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FIGURE 3.9. Maximal overlap discrete wavelet packet transform of a linear chirp.




3.5 Multiresolution Decomposition and Analysis 35

> modwt.ecg <- wavMODWT( ecg, wavelet = "s8", n.levels = 6 )
> mrd.ecg <- mrd( modwt.ecg )
> mrd.ecg

Maximal Overlap Wavelet Decomposition of modwt.ecg
Wavelet: s8

Length of series: 2048

Number of levels: 6

Boundary correction rule: periodic

Filtering technique: convolution

Signal Components: D1 D2 D3 D4 D5 D6 S6

> plot( mrd.ecg )
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FIGURE 3.10. MODWT multiresolution decomposition of an ECG sequence.

Figure 3.10 shows the resulting MRD of the ecg sequence out to six de-
composition levels. We see that the baseline drift (due to respiration) is
captured mainly in the S6 crystal while a small amount of noise is seen in
the first portion of the D1 crystal. Suppose we wish to get rid of the small
scale (high frequency) noise that exists in the D1 component and to exclude
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the low frequency base-line drift due to respiration captured in component
S6. To do so, we simply sum components D2-D6:

> nobaseline <- apply( mrd.ecg(2:6,], MARGIN=1, sum )
> comparison <- list( ecg=ecg, detrend=nobaseline )

> stack.plot( comparison )

Figure 3.11 shows a comparison of the “denoised” and original ecg sequence.
The denoised version is much cleaner than the original. We can also prove

- (1
gl ey

Jetrend wﬂ\[ﬁ'\m M%MWW{\MM%NJ\/\

0 500 1000 1500 2000

FIGURE 3.11. Denoising an ECG sequence using a MODWT MRD. The top
plot shows the ecg sequence. The bottom plot shows the summation of the MRD
crystals D2-D6. The effect is to remove the low-frequency baseline drift and
high-frequency noise components.

that a summation over all crystals of the MRD will give us the original
sequence:

> vecnorm( ecg@data - reconstruct(mrd.ecg) )
[1] 3.338254e-11

You can also obtain a subset of the components of an MRD through
the wavDetail function. The wavDetail function is highly flexible in that it
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is usable for the DWT, MODWT, DWPT, and MODWPT. To illustrate,
let us generate these transforms for the first difference of the atomic clock
sequence atomclock:

> x <~ diff( as.vector(atomclock) )

> x.dwt <- wavDWT( x, n.levels = 3 )

> x.dwpt <- wavDWPT( x, n.levels = 3 )

> x.modwt <- wavMODWT( x, n.levels = 3 )

> x.modwpt <- wavMODWPT( x, n.levels = 3 )

The wavDetail function takes two arguments, level and osc, which are used
to specify the decomposition level and oscillation index, respectively. A
(level, osc) doublet defines the location of a particular node or crystal in
a sequency-ordered wavelet packet tree. If you call the wavDetail function
without specifying any values for level or osc, then by default an MRD is
returned.

> wavDetail( x.dwt )

Wavelet Decomposition of x.dwt
Wavelet: haar

Length of series: 1026

Number of levels: 3

Boundary correction rule: periodic
Filtering technique: convolution
Signal Components: D1 D2 D3 S3

> wavDetail( x.dwpt )

Discrete Wavelet Packet Decomposition of x.dwpt

Wavelet: haar

Length of series: 1026

Number of levels: 3

Boundary correction rule: periodic

Filtering technique: convolution

Signal Components: W3.0 W3.1 W3.2 W3.3 W3.4 W3.5 W3.6 W3.7

Notice that, in the case where the transform is a wavelet packet, an MRD of
the nodes found in the last level is returned. In the non-packet transform
case (e.g. in the DWT or MODWT) the default action is to return the
MRD of the available crystals which span all levels in the transform. The
plot method can be used to display the MRD.
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> plot( wavDetail(x.dwt) )
> plot( wavDetail(x.dwpt) )

The MRD for the x.dwt and x.dwpt objects are shown in Fig. 3.12 and 3.13,
respectively. If we wish to decompose only those crystals associated with

sum
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FIGURE 3.12. DWT multiresolution decomposition of the atomclock differences.

a particular decoposition level, we can do so by specifying the level in the
call to wavDetail:

> plot( wavDetail x.dwt, level = 3), show.sum = F )

Figure 3.14 shows the level three details for the x.dwt object. You can also
form the details for a single node or group of nodes in a particualr level
as well by specifying both the level and osc arguments of the wavDetail
function.
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FIGURE 3.13. DWPT multiresolution decomposition of the atomclock differ-

ences.
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D3

S3

0 200 400 600 800 1000

FIGURE 3.14. DWT multiresolution decomposition of the atomclock differences.
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> wavDetail( x.modwt, level = 2, osc = 1)

Maximal Overlap Wavelet Decomposition of x.modwt
Wavelet: s8

Length of series: 1025

Number of levels: 3

Boundary correction rule: periodic

Filtering technique: convolution

Signal Components: D2

> wavDetail( x.modwpt, level = 2, osc = c(0,3) )

Maximal Overlap Wavelet Packet Decomposition of x.modwpt
Wavelet: s8

Length of series: 1025

Number of levels: 3

Boundary correction rule: periodic

Filtering technique: convolution

Signal Components: W2.0 W2.3

NOTE: For non-packet transforms such as the DWT or MODWT, the
osc argument in the wavDetail function must be set as osc=1 for levels
j < J where J is the total number of decomposition levels. For level j = J,
the osc argument must be set such that 0 < osc < 1. This format is
consistent with the sequency ordering of wavelet packet trees (see Fig. 3.8
and corresponding text for details).

3.6 The Dual Tree Wavelet Transform

The Dual-Tree Complex Wavelet Transform (DTWT) is a recent devel-
opment in wavelet theory due to Nick Kingsbury at Cambridge Univer-
sity [Kin98, Kin99, Kin00]. The research that resulted in the DTWT was
motivated by the quest for a wavelet transform that would have a com-
bination of desirable properties, some of them shared by classical wavelet
transforms, and some of them new. These are

e Invertibility. The ability to “perfectly” reconstruct the data after
transformation, i.e. the transform of a function has an inverse and, in
the absence of round-off errors, the inverse is identical to the original
function. This property is easily demonstrated for the DTWT, for
example by transforming a random sequence:
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> rand <- rnorm( 128 )

> rand.dtwt <- wavDTWT( rand )

> rand.recon <- reconstruct( rand.dtwt )

> vecnorm( rand - rand.recon ) / vecnorm( rand )
[1] 7.682155e-15

While many classical wavelet transforms have this property, the re-
quirements for achieving perfect reconstruction can conflict with those
for achieving shift invariance and directional selectivity [Kin99].

Shift invariance. In the ideal case, shift invariance would mean
that, if the location of a feature (e.g., a line or an edge) in the origi-
nal function or image were shifted, then the wavelet coefficients, and
the component$ of the multiresolution decomposition, would exhibit
a similar shift, and there would be no transfer of energy between
different levels of the transform. This property would be highly de-
sirable, but it is not found in the classical wavelet transforms. There,
shifting a feature often results in considerable shifting of energy be-
tween different transform levels. For an example of this behavior, see
the following section. Also see §5.1 of [PW00].

As noted in [BG96), it is possible to achieve shift invariance by use
of a non-decimated wavelet transform such as the MODWT. But,
in that transform, the wavelet coefficients are evaluated without any
decimation. Thus, the MODWT achieves shift invariance only at the
expense of a high degree of redundancy, and with a considerable in-
crease in computation and data handling.

Directional selectivity. In a 2D image, if certain features are aligned
to the horizontal at angles of + 15 deg, £ 45 deg, or + 75 deg,
then these alignments also will be evident in the magnitudes of the
wavelet coefficients. Ideally, features aligned in the positive (+) direc-
tions would be distinct from those aligned at the negative (-) direc-
tions. Unfortunately, achievement of this ideal has been elusive, and
classical wavelet transforms show an equal emphasis of the + and -
directions.

Low noise amplification. Small changes in the wavelet coefficients
do not lead to large changes in the reconstructed signal. Many clas-
sical wavelet transforms do have this property, but maintaining it
places constraints on the achievement of the other properties listed
here. Thus, noise amplification limits the usefulness of wavelet trans-
forms based on a single tree of complex filters [dR00].

The DTWT is a recent attempt to create a transform having the fea-
tures described above. The DTWT retains perfect reconstruction, achieves
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a good (approximate) degree of shift invariance, has good directional se-
lectivity, and has low noise amplification. These features do come with a
modest degree of redundancy (a factor of 2 in one dimension, or four in
two dimensions), but this is considerably less than the redundancy of the
non-decimated wavelet transform.

We note that Kingsbury has presented two versions of the DTWT that
differ in the types of filters used. The first version was termed the ‘Odd-
Even’ version [Kin98]. The second, more recent, version is termed the
‘Q-shift’ version [Kin00]. It is the Q-shift version that is implemented in
Wavelets 2.0.

3.6.1 Some features of the DTWT

There are two principal differences between the DTWT and classical wavelet
transforms:

1. Decimation of the transform coefficients is eliminated at Level 1, but
is retained at all higher levels. The output of the Level 1 transform is
separated into two streams. The odd-indexed data is passed into one
‘tree’ of filters that generate the higher levels of the transform, using
a different set of filters than used at Level 1. The even-indexed data
is passed into a second ‘tree’ of filters that also generate the higher
levels of the transform, but with a set of filters whose coefficients are
reversed versions of those in the first tree. It is this dual set of filter
trees that is referred to by the words ‘Dual Tree’ in the name of the
transform. The overall picture is equivalent to having two completely
separate trees, each including the same Level-1 filters, but with the
second tree’s Level-1 filters including a unit delay. This viewpoint is
illustrated, for a DTWT through Level 3, in Fig. 3.15. If additional
levels were present, their filters would repeat those shown for Levels
2 and 3.

9. The filters in the two trees are designed to have the character of ‘real’
and ‘imaginary’ parts of an overall complex wavelet transform. (But,
we must emphasize, this is accomplished with filters that have purely
real coefficients!) Here, the ‘complex’ nature of the result must be
understood in the analytic signal sense of the term. Thus, the mother
wavelets associated with each tree are discrete versions of Hilbert
transforms of one another [Sel00]. Equivalently, the lowpass filters of
one tree interpolate midway between the lowpass filters of the second
tree [Kin99). Again, we emphasize that no complex numbers are in-
volved in the evaluation of the transforms themselves. However, the
results obtained from the two trees, TreeA and TreeB, are inter-
preted as (T'reeA) + i(TreeB)
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FIGURE 3.15. The three-level Dual-Tree Complex Wavelet Transform as a filter
bank.

gb

Kingsbury has provided four sets of filters that can be used at Level 1,
and four sets that can be used at the higher levels. The Level 1 filters all are
biorthogonal filters, and are termed nearsyma, nearsymb, antonini, and
legall. The filters for use at the higher levels all are quarter-shift (‘Q-shift’)
filters and are termed a, b, ¢, and d. Specific sets of filter coefficients can be
selected via the function wavKingsbury, and the impulse responses of the
selected filters can be displayed, as in Fig. 3.16.

> filts <- wavKingsbury( biorthogonal="antonini", gshift="b" )

> plot( filts, type = "time" )

Alternatively, the frequency responses of the filters can be displayed, as
shown in Fig. 3.17.

> plot( filts, type = "gain" )

The approximate shift-invariance of the DTWT, and the corresponding
lack of shift-invariance of a classical wavelet transform, are illustrated in
Fig. 3.18 and 3.19. These figures compare the multi-resolution decompo-
sitions of a sequence of sixteen shifted unit step functions as generated by
the DTWT using the nearsyma and Q-shift a wavelets, and by a DWT using
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FIGURE 3.16. Impulse Responses of DTWT Filters. This example has selected
the Antonini filters for Level 1 and the Q-Shift b filters for the higher levels.
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FIGURE 3.17. Frequency Responses of DTWT Filters.
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FIGURE 3.18. DTWT multiresolution decompositions of shifted step functions.
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FIGURE 3.19. DWT multiresolution decompositions of shifted step functions.
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the s8 wavelet. The upper plot in each figure shows the step functions. As
an aid in visualization of the entire sequence, each successive function has
been drawn at a slightly lower elevation. The next five plots in each figure
show the components of the Level-4 multiresolution decompositions of the
step functions, specifically the D1, D2, D3, D4, and S4 components. These
too have been drawn with each successive case at a slightly lower elevation.
In every instance, the original step function is the sum of its five com-
ponents. These detailed figures were generated by combining a number of
similar S-PLUS commands into a source file. Generation of any single com-
ponent, however, is straightfoward. For example, if u.step is a step function
of length 128 then the D1 component of its multiresolution decomposition
is generated by

u.step <- c( rep(0,64), rep(1,64) )
u.step.dtwt <- wavDTWT( u.step, n.levels=4 )
u.temp.dtwt <- u.step.dtwt

u.temp.dtwt[ c("42", "d3", "d4", "s4") ] <- 0
D1.step <- reconstruct( u.temp.dtwt )

vV V.V VYV

As Fig. 3.18 clearly shows, when the multiresolution decomposition is based
on the DTWT, the principal effect of a shift in step location is a corre-
sponding shift of each component, with very little transfer of energy be-
tween different levels. Figure 3.19, however, which shows the results for the
DWT, provides a sharp contrast. While each step function still is the sum
of its individual components, none of the components exhibit a simple shift
behavior. The D1 component appears to oscillate between two different
shifted states, while the D2, D3, and D4 components show major transfers
of energy between the different levels. The S4 component comes closest to
showing a simple shift, but it too has noticeable distortion compared to
what is seen in Fig. 3.18. The conclusion is that DTWT achieves a high
degree of shift invariance that is not present in the ordinary DWT, and it
does so at the expense of only a two-fold degeneracy (in one dimension).

The directional selectivity of the DTWT can be illustrated best by ap-
plication to an idealized image. To that end, the function make.image can
be used to construct a binary image in the form of a twelve-petal flower,
as shown in Fig. 3.20.

> posy <- make.image( "flower", nrow=256 )
> par( pty="s" )
> image( posy, axes=F )

The petal centerlines are oriented at the angles of 15 deg, 45 deg, 75 deg,
_to the horizontal. The two-dimensional DTWT of the flower can be
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FIGURE 3.20. Binary image of an idealized twelve-petal flower as a 256 x 256
matrix.
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evaluated, and the magnitudes of different combinations of the DTWT
coefficients can be displayed as in Fig. 3.21.

> posy.dtwt <- wavDTWT.2d( posy, n.levels=3 )
> plot( posy.dtwt )
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FIGURE 3.21. Complex magnitudes of the DTWT of the flower image.

Features in the image that are oriented at different angles have their coun-
terparts in the DTWT coefficients. Different orientations can be empha-
sized by selecting DTWT coefficients associated with different combinations
of lowpass (scaling) and highpass (wavelet) filter outputs in the transforms
of the rows and columns. Thus, at any particular level, the row coefficients
and, independently, the column coefficients can be associated with either
the highpass filters or the lowpass filters. Positive or negative angular ori-
entations are emphasized in the DTWT by choosing the ‘imaginary’ parts
of the row and column transforms to be associated with imaginary units
‘i’ having the same algebraic signs, or the opposite algebraic signs, respec-
tively. In the analytic signal interpretation, this corresponds to the selection
of frequency ranges in the row and column transforms that have the same
algebraic signs, or the opposite signs, respectively. Of course, we display the
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complex magnitudes of the wavelet coefficients. This ability to emphasize
positive and negative orientations separately is unique to the DTWT and
would not be seen in a display based on a real DWT.

An enlarged view of any one, or more, of the six small images in Fig. 3.21
also can be obtained. For example, the +45 deg image is shown in Fig. 3.22.

> plot( posy.dtwt, angle=+45 )

d2-d2 (+45)

FIGURE 3.22. Complex magnitude of the DTWT of the flower image to empha-
size features at +45 deg.

1t is possible to suppress less prominent features in the plot of a DTWT
by use of the threshold argument in plot. This argument ranges from 0 to
1, and has the default value 1. For example:

> plot( posy.dtwt, angle=+45, threshold=0.8 )

The result is shown in Fig. 3.23, which displays the same DTWT image as
in Fig. 3.22 but plotted with threshold = 0.8. The effect of this setting is
to plot a zero for any DTWT coefficient whose complex magnitude is less
than 0.8 times the maximum amplitude of the DTWT.
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d3-d3 (+45)

FIGURE 3.23. Complex magnitudes of the DTWT of the 45 deg flower image
plotted with threshold = 0.8.




While the directional selectivity of the DTWT is most striking for an
idealized image, such as the flower, it also is apparent with images from
the real world. As an illustration, we consider the classical Lena image
shown in Fig. 3.24 as a 512 x 512 pixel gray-scale image.
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> image( lena, axes=F )
|
|
|

FIGURE 3.24. The Lena Image

The magnitudes of the DTWT coefficients of the Lena image are shown in
Fig. 3.24.

> lena.dtwt <- wavDTWT.2d( lena, n.levels=2 )
> plot( lena.dtwt )
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FIGURE 3.25. Complex magnitudes of the Level-2 DTWT of the Lena image.
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An expanded view of any one, or more, of the small images also can be
displayed. For example, a view of the images for the angles +45deg is

obtained via the commands

> plot( lena.dtwt, angle=c(+45,-45) )

d2-d2 (+45) d2-d2 (-45)

FIGURE 3.26. Complex magnitudes of DTWT of the Lena image selected to
emphasize features oriented at +45 deg.

and is shown in Fig. 3.26. The ability of the DTWT to emphasize features
oriented at specific angles in the image is apparent.
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Wavelet Variance Analysis

Wavelet variance analysis is a method of partitioning the variance of a time
series into pieces that are associated with different scales. This type of anal-
ysis tells us what scales are important contributors to the overall variability
of a time series. Wavelet variance analysis has been found to be useful in
the analysis of, e.g., financial time series, genome sequences, frequency fluc-
tuations in atomic clocks, changes in the variance of soil properties, canopy
gaps in forests, the accumulation of snow fields in the polar regions, turbu-
lence in the atomosphere and ocean, and regular and semiregular variable
stars.

Wavelet variance analysis involves the estimation of a sequence of the-
oretical quantities called the wavelet variance (see Section 4.1 below for a
precise definition). Each term in this sequence is associated with a particu-

larscaler; = 2771, 5 =1,2,3,.... If weregard the time series Xo, X1,..., XN=1

under analysis as a realization of a portion of a stationary process with vari-
ance 0% and if we let v% (r;) denote the wavelet variance for scale 7;, then
we have the fundamental relationship

o0
ok =Y _vk(m)-
i=1

The above relationship is analogous to the fundamental relationship be-
tween the variance of a stationary process and its spectral density function
(SDF). If we let Sx(f) denote this SDF at the frequency f € [-1/2,1/2],
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then we have
1/2

ok = Sx(f)df.
-1/2
Thus, just as the SDF for a stationary process decomposes the process vari-
ance across different frequencies, so does the wavelet variance decompose
it across different scales.
The wavelet variance is of interest for the following reasons.

¢ Because the wavelet variance offers a scale-by-scale decomposition
of the variability in certain stochastic processes, it has considerable
appeal for researchers studying processes that exhibit fluctuations
over a range of different scales. Such processes commonly occur in,
e.g., the atmospheric sciences and oceanography.

e The wavelet variance is closely related to the concept of the SDF.
Both provide an analysis of the variance of a stationary process across
a physically interpretable independent variable (frequency in the case
of the SDF, and scale in the case of the wavelet variance). Since
the scale 7; can be related to a range of frequencies in the interval
[1/29-1,1/29), the wavelet variance often leads to a more succinct
decomposition. In addition, the square root of the wavelet variance
has the same units as the original data, which can make it more easily
interpretable than the SDF (if the units for the time series are in, say,
meters, and if the time between observations is in, say, seconds, then
the units for the SDF are in meters squared per Hertz, where a Hertz
is defined to be one cycle per second).

o For certain stationary processes, the sample variance of a time series,
namely,

N-1

1 1=
- -X)? X==) X
N 0(Xt X)*, where X N tzzo t

t=

2:
X =

Q

can grossly underestimate the process variance 0% even when the

sample size N is quite large. For these processes, the wavelet vari-
ance is a useful substitute because it replaces the problematic notion
of a ‘global’ variance with a sequence of variances over particular
scales, for which we can readily formulate unbiased estimators. In
addition, the wavelet variance is well-defined and can be easily esti-
mated for certain nonstationary processes for which the variance is
either infinite or an ever increasing function of the sample size N.
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4.1 Definition of the Wavelet Variance

Let h 1 be the level j equivalent MODWT wavelet filter based upon the
MODWT wavelet and scaling filters by and § G of width L (see Section 3.2.1
for details). Let {X,,t = -1,0,1,...} represent a discrete parameter
stochastic process, i.e., a collection of random variables (RVs) indexed by
the set of all integers. Define the level j MODWT wavelet coefficients for
this process as

Lj-1
djs = Z hiji X1,

where t ranges over all the integers. By definition, the wavelet variance
v% (15) for scale 7; = 29! is defined to be the variance of dj e

v%(7j) = var {d;:}-

If we make certain assumptions about the process {X;}, then v%(7;) will
be finite and mdependent of the time index t, and moreover we will have
E{d;:} = 0 so that E{d?,} = var{d;;} (for these conditions to hold, it
suffices that the backward differences of {X;} of a certain order constitute a
zero mean stationary process; see Chapter 8 of Percwal and Walden, 2000,
for details). In what follows, we assume that v%(7;) and d;: obey these
conditions.

4.2 Estimation of the Wavelet Variance

Suppose now that we have a time series of N values that we regard as a
portion Xg, Xi, ..., Xn-1 of a stochastic process {X:}. Let {hl} be a
MODWT wavelet ﬁlter of width L, and assume that {X;} satisfies condi-
tions such that the wavelet variance v% (r;) for scale 7; = 27! based upon
this filter is finite and independent of time. Let L; = (29 —1)(L—1) + 1 be
the width of the equivalent MODWT filter {hj,} for level j (when j =1,
we have hy; = by and L; = L). Then the unbiased MODWT estimator of
the wavelet variance is defined as

N-—
i Z
t=L;—

where d;; is the MODWT wavelet coefficient at level j and time index ¢,

and M; = N — L; +1 (we assume that M; > 1). Note that, while there are
N MODWT wavelet coefficients at each level 7, we only use the last M; of
these. The unbiased wavelet variance estimator avoids the first L; —1 coef—
ficients on each level because these are the so-called boundary coefﬁcients;
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i.e., these coefficients make explicit use of the circularity assumption built
into the MODWT and hence are formed by combining together values both
at the beginning and the end of the time series, with the result that E{d?yt}
need not be equal to v%(7;). If we retain these boundary coefficients, we
obtain a biased MODWT estimator of the wavelet variance, namely,

L N=1
v% () = N Z dz,r
t=0

The DWT can also be used to formulate estimators of the wavelet vari-
ance, but the sampling properties of these estimators are generally inferior
to those of the MODWT estimators. Let N} = |N/2/| be the number of
DWT wavelet coefficients at level j, and L = [(L — 2)(1 — 277)] be the
number of DWT boundary coefficients at level j (assuming N; > L'j).
Then the DWT version of the unbiased estimator of the wavelet variance
is defined as

N;—-1
1 3

22 _
vx(r;) = W=D > &
J J t=L5—1
where d; ; is the DWT coefficient at level j and time index ¢. Similarly, the
DWT version of the biased wavelet variance is defined as

) 1 Ni-1
17X(7'j) = W z d?,t‘
J t=0

4.3 Distribution of Wavelet Variance Estimators

An approximation to the distribution of the unbiased MODWT wavelet
variance estimator &% (7;) has been worked out and can be used to assess its
sampling variability and to obtain confidence intervals for the true wavelet
variance v% (7;) (see Sections 8.3 and 8.4 of Percival and Walden, 2000, for
details). This approximation is based on the assumption that the statistic
7% (7;) has a distribution that is equal to an RV given by the product of
a chi-square RV x2 with 7 degrees of freedom and the constant v (1;)/n-
The starting point for this approximation is to note that, if we have M
independent and identically distribution Gaussian RVs with mean zero,
then the sum of their squares forms an RV whose distribution is given
by the product of a chi-square RV x2, with M degrees of freedom and a
constant. By assumption, the MODWT wavelet coefficients Jj,t that we
use to form $% (7;) are Gaussian RVs with mean zero and variance v (1;);
however, because these coefficients are in general correlated with each other,
their sum of squares is not a chi-square RV with M; degrees of freedom. We
can adjust for this correlation by setting 7 equal to a value such that the
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RV v% (75)x2 /0 has the same theoretical variance as 9% (7) (we can obtain
a good approximation to this theoretical variance by appealong to a large
sample approximation). In this approach, n is known as the ‘equivalent
degrees of freedom’ (EDOF) and in effect becomes a parameter that we
need to determine somehow.

The S+Wavelets module supports three different modes for setting the

EDOF 7.
1. EDOF 7}, (based upon large sample theory):
. Moy ()
Th = ~ 3
Aj

where

M;-1

A4 J

- U (15

= Ox (1) 22

4; 5 T Z Sjrs
=1

and §;,. is a sample lag 7 autocovariance defined by

N-1-}7|
1 _
Sj,r = A_J— Z dj,tdj,t+‘r| 0 S lT' S M] - 1.

J t=L;~1

2. EDOF 7, (based upon the assumption that the shape of the SDF
for {X;} is known a priori):

2
2 (A 65000
WL ()

2=

)

where fr = k/M; and C;(f) « ’}qu)(f)Sx(f). i.e., the product of
the squared gain function for the Daubechies MODWT equivalent
wavelet filter {h;;} for level j and the SDF for {X;} (assumed to be
known up to a constant of proportionality).

3. EDOF 73 (large sample approximation based upon a band-pass
approximation):

fj3 = max{M;/27,1}.

Once 7 has been set to either 7, 7j2 or 73, we can calculate an approxi-
mate 100(1 — 2p)% confidence interval for v% (7;) via

ok (1) vk (7;)
Qn(1-p)" Qnlp) I’
where Q,(p) is the px 100% percentage point for the chi-square distribution

with 7 degrees of freedom (setting p = 0.025 yields an approximate 95%
confidence interval).
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4.4 The Wavelet Variance Object

The wavVariance function calculates the wavelet variance of a real-valued
uniformly-sampled time series and returns an object of class WaveletVari-
ance. Several methods are available to the user to view, summarize and
access the data contained in a WaveletVariance object:

Summary Operator Methods:

print Prints useful information regarding the wavelet vari-
ance including:
o Type of wavelet transform.
¢ Information regarding the filter set.
o Number of décomposition levels.
¢ Boundary extension rule.
o Filtering technique (convolution or correlation).
e The crystal names.

o The scale of each crystal.

plot Plots the wavelet variance estimates. The plot func-
tion has two optional arguments type and edof. Set
type to “unbiased” or “biased” to plot unbiased or bi-
ased estimates, respectively. To select the EDOF mode
of confidence intervals to be plotted, set edof to a vec-
tor of integers representing the desired EDOF mode as
a third argument (e.g., c(1, 3) for both EDOF mode
1 and 3).

summary Displays a statistical summary of the transform data.
Data Access Methods
$ Use to access specific components of the class object.

A list of accessible components can be generated using
the names function.
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4.5 Example: Wavelet Variance of Atomic Clock

Data

> var.clock <- wavVariance( atomclock, n.levels = 5 )
> summary( var.clock )

MODWT wavelet variance of atomclock
di d2 d3 d4 ds
Biased 3.5e+00 5.0e+00 9.2e+00 1.8e+01 3.6e+01
Unbiased 2.4e-06 5.6e-06 1.5e-05 4.1e-05 1.7e-04

Confidence Interval Data for Unbiased
Time Independent Wavelet Variance:

dl d2 d3 d4 d5

Level 1 2 3 4 5
Scale 1 2 4 8 16
[EDOF1] 805 353 172 99 50
[EDOF2] NA NA NA NA NA
[EDOF3] 510 251 122 58 25
# coeffs 1019 1005 977 921 809

The summary method for the WaveletVariance object gives a complete pic-
ture of the wavelet variance estimates as well as the EDOF and correspond-
ing confidence intervals. To plot the data, simply invoke the plot method
using an optional character string to denote biased or unbiased estimates
as a second argument and a vector denoting the EDOF mode to use in
displaying the confidence intervals as an optional third argument:

> plot( var.clock, type = "unbiased", edof = ¢(1,3) )

Figure 4.1 shows the wavelet variance versus scale (measured in days) for
an atomic clock sequence formed by measuring the difference in time kept
by a clock 571 and by an ensemble of cesium beam atomic clocks used in the
1970s by the US Naval Observatory to form the official time scale for the
US. The fact that the values of the wavelet variance for the four smallest
scales (1 to 8 days) lie roughly on a line in a log/log plot indicates that
the SDF varies approximately as a power law over the corresponding range
of frequencies (i.e., 1/32 to 1/2 cycles per day). The fact that the wavelet
variances increase monotonically with scale indicates that the ability of
clock 571 to keep time decreases as the time span (scale) increases.

The DWT estimation of the wavelet variance can also be calculated by
setting the transform argument appropriately.
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Wavelet Variance of atomclock: EDOF Mode 1 EDOF Mode 3

0.0001
0.0001
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1e-05

Unbiased MODWT Wavelet Variance ( s8 )

£
£3
P

Scale (day) Scale (day)

FIGURE 4.1. Unbiased MODWT wavelet variance estimates of the atomclock
time series for levels j = 1,...,5 using Daubechies s8 filters. The left and right
plots display confidence intervals using EDOF mode 1 and 3, respectively.




4.6 Other Wavelet Variance Functions 65

> wavVariance( atomclock, transform = "dwt" )

DWT wavelet variance of atomclock
Wavelet: s8
Length of series: 1026
Number of levels: 7
Boundary correction rule: periodic
Filtering technique: convolution
Sampling interval: 1

di d2 d3 d4 d5 d6 d7
Scales 1 2 4 8 16 32 64

NOTE: No confidence limits are available for the DWT wavelet wavelet
variance estimator. The default transform (MODWT) also produces more
accurate estimates than does the DWT version and can be used to produce
instantaneous variance estimates.

4.6 Other Wavelet Variance Functions

You can also use the wavEDOF and wavVarianceConfidence functions in-
dividually to obtain EDOF and wavelet variance confidence interval es-
timates, respectively. Here, we estimate the EDOF and wavelet variance
confidence intervals for the ocean vertical shear time series:
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The wavEDOF function returns a list with members variance.unbiased and
EDOF1, EDOF2, EDOF3 which can be used as inputs to the wavVariance-
Confidence function. Note that (in general) only unbiased wavelet variance
estimates are suitable for confidence interval estimation so the unbiased
version is accordingly not returned by wavEDOF. To calculate the 95%
confidence intervals corresponding to EDOF mode 1 we call the wavVari-

4. Wavelet Variance Analysis

> edof <- wavEDOF(ocean)
> edof
$EDOF1:
di d2 d3 d4 db5 dé
1808.758 940.1328 522.7423 274.3481 78.1384 81.87458

a7 ds d9
27.16933 18.4152 6.777816

$EDOF2:
[1] NA NA NA NA NA NA NA NA NA

$EDOF3:
d1 d2 d3 d4 ds dé
2044.5 1018.75 505.875 249.4375 121.2188 57.10938

a7 ds d9
25.05469 9.027344 1.013672

$variance.unbiased:
di d2 d3 d4
0.0002309741 0.0004410549 0.0005715682 0.001836403

a5 dé a7 ds ok}
0.009440761 0.04758687 0.4106984 0.9862548 0.469676

$n.coeff:
di d2 d3 d4 d5 dé d7 d8 d9
4089 4075 4047 3991 3879 3655 3207 2311 519

anceConfidence function as follows:
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> wavConfidenceLimits( edof$variance.unbiased, edof$EDQOF1 )
$low:
di d2 d3 d4
0.0002188667 0.0004094998 0.0005177851 0.001604601

ds dé a7 ds8 d9
0.007393772 0.03746485 0.2767846 0.6179611 0.2262995

$high:
d1 d2 d3 d4
0.0002441744 0.0004766303 0.000634739 0.002125904

d5 d6 a7 ds dg
0.01255137 0.06281859 0.6854098 1.874926 1.468822

The result shows the low and high 95% confidence interval limits based
on the unbiased wavelet variance estimates and the chi-square EDOF esti-
mates.

4.7 Testing for Homogeneity of Variance

An implicit assumption we have made in constructing an estimator of the
wavelet variance is that var {djyt} does not depend upon the time index ¢;
i.e., we are assuming that the variances of the MODWT wavelet coefficients
iare homogeneous across time. If this assumption appears to be question-
able for a particular time series, we can perform a statistical test based
upon the corresponding DWT (recall that we can extract the DWT coefli-
cients from the MODWT coefficients by an appropriately subsampling and
rescaling the latter).

The wavVarianceHomogeneity function tests for homogeneity of variance
for each level of a DWT decomposition. Based on the assumption that the
DWT decorrelates the data, the nonboundary (interior) wavelet coefficients
in a given level (d;) can be regarded as a zero mean Gaussian white noise
process. For a homogeneous distribution of dj, there is an expected lin-
ear increase in the cumulative energy as a function of time. The so called
D-statistic denotes the maximum deviation of the d;; from a hypothetical
linear cumulative energy trend. This D-statistic is then compared to per-
centage points dictated by the distribution of D under the null hypothesis
that the variance is in fact homogeneous. Comparing the D-statistic for
the d;; values o the corresponding percentage points provides a means of
quantitatively rejecting or failing to reject the null hypothesis.

The wavVarianceHomogeneity function can be used to perform a homo-
geneity test on a level by level basis. This function accpets a number of
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input arguments that are used to specify how the test is to be performed.
The main arguments are an input time series as well as the optional argu-
ments: wavelet, n.levels, significance, lookup, n.realization, n.repetition. The
arguments wavelet and n.levels are the same as those used for the wavelet
transforms. The remaining optional arguments are used as used to de-
termine the percentage points under the null hypothesis. An Inclan-Tiao
approximation to the percentage points is used for sample sizes N > 128
while a Monte Carlo technique is used for N < 128. For the Monte Carlo
technique, the D-statistic for a Gaussian white noise sequence of length N
is calculated. This process is repeated n.realization times, forming a distri-
bution of the D-statistic under the null hypothesis. The upper 10%, 5%
and 1% percentage points based upon n.realization realizations are formed
a total of n.repetition times, and averaged to form an estimate of the true
percentage points for the D-statistic. Because the Monte Carlo study can
be both computationally and memory intensive, it is highly recommended
that lookup be set to TRUE, its default value.

As an example, let us apply the test for homogeneity of variance to the
fdp045 series (a simulated stochastic fractal time series). To begin the test,
we simply call the wavVarianceHomogeneity function.
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> wavVarianceHomogeneity( £dp045 )
Homogeneity Test for Discrete Wavelet Transform of f£dp045

Pass:

10% 5% 1%
d6 F T T
a5 T T
d4 F T T
d3 T T T
d2 T T T
di T T T

D-statistic critical values comparison:

N D 10% 5%
d6: Monte Carlo 2 0.99561682 0.9931909 0.9984854
dS: Monte Carlo 10 0.26449419 0.5027442 0.5577445
d4: Monte Carlo 26 0.34851101 0.3185281 0.3549792
d3: Monte Carlo 58 0.09888661 0.2183442 0.2425481
d2: Monte Carlo 123 0.10464938 0.1515953 0.1679855
d1: Inclan-Tiao 253 0.03866207 0.1088155 0.1207195

1%
d6: Monte Carlo 0.9999397
d5: Monte Carlo 0.6590028
d4: Monte Carlo 0.4280126
d3: Monte Carlo 0.2945787
d2: Monte Carlo 0.2028810
d1l: Inclan-Tiao 0.1447117

Lookup: TRUE

Inclan-Tiao tolerance: 1e-06

Repetitions: 3 (lookup), 3 (non-lookup)
Realizations/repetition: 10000 (lookup), 10000 (non-lookup)

Wavelet: s8

Length of series: 512

Number of levels: 6

Boundary correction rule: periodic
Filtering technique: convolution
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4.8 Estimation of the Wavelet Covariance

In a manner analogous to how we defined the wavelet variance for a time
series, we can define a wavelet covariance between two time series. The
wavCovariance function is used to estimate the wavelet covariance of two
sequences. As in the case of the wavelet variance, we can formulate biased
and unbiased estimators of the wavelet covariance based upon either the
MODWT or the DWT. Given the time series Xo, X1, -.., X~—1 and Y,
Y1, ..., Yn_1, the MODWT biased and unbiased estimators of the wavelet
covariance are defined as

N-1
Biased: 7%y = 'JIV wOwy (4.1)
t=0
N ——
Unbiased: 7%y = ~— Z W(X)W(Y) (4.2)
M; t=L;

where, as before, M; = N — L;+1 is the number of nonboundary (interior)
MODWT wavelet coeﬁiments and L;j = (29 —1)(L — 1) + 1 is the length of
the level § MODWT equivalent ﬁlter {h;.}. An integer lag ¢ can be used
to study the covariance between to processes whose events are assumed
to be correlated at different times. For example, the lagged biased wavelet
covariance is defined as

. Y
Biased, Lagged: Uy 4 = Z W(X) J(,t-!)—qb mod N- (4.3)

The wavelet covariance can also be estlmated using DWT wavelet coeffi-
cients. Given the same time series as before, the DWT biased estimator of
the wavelet covariance is defined as

N;—1
. =2 _ 1°¢ X) (Y
Biased: Vxy E d§‘t)d§,t), (4.4)
t=0

where N; = N/27 for j = 1,...,J. As before, only the nonboundary (in-
terior) wavelet coefficients are used to form the corresponding unbiased
DWT-based wavelet covariance estimator. Assuming that N; > L, this
estimator is given by

Unbiased: Dy = Z dXdY), (4.5)
-7 t=L}

where M; = N - 2L} with L = [(L-2)(1-27 7)] (for large j, L; = L—2).
The lagged biased wavelet covarlance estimator is defined as

. =2 1
Biased, Lagged: Uxy 4 = N Z d(x)d?:zrq5 mod N;* (4.6)
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As a simple (and somewhat artificial) example, let us perform the wavelet
covariance calculations for consecutive 1024 point segments of the sunspots
series.

> sunl <- sunspots[1:1024]

> sun2 <~ sunspots{(1:1024)+1024]

> xcov <- wavCovariance( suni, sun2 )
> xcov

MODWT wavelet covariance of x and y
Wavelet: s8
Length of series: 1024
Number of levels: 7
Boundary correction rule: periodic
Filtering technique: convolution
Scales:
di d2 d3 d4 d5 d6 47

1 2 4 816 32 64

Lags:
dl d2 43 d4 45 d6 47
0 0 00 0 0O

> plot( xcov )

The results are shown in Fig. 4.2. There is an apparent lag between the
two sequences of approximately 75 points. We can impose a corresponding
lag in the wavelet covariance results.
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Unbiased Wavelet Covariance
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FIGURE 4.2. The discrete wavelet covariance of the successive sun-spots series.




4.8 Estimation of the Wavelet Covariance 73

> xcov.lag <- wavCovariance( sunl, sun2, lag = 75 )
> xcov.lag

MODWT wavelet covariance of x and y
Wavelet: s8
Length of series: 1024
Number of levels: 7
Boundary correction rule: periodic
Filtering technique: convolution
Scales:
dl 42 d3 d4 d5 d6 47

1 2 4 816 32 64

Lags:
dl d2 d3 d4 d5 d6 47
75 75 75 75 75 75 75

> plot( xcov )

The results are shown in Fig. 4.3. Relative to Fig. 4.2, the convariance
results shown in Fig. 4.3 exhibit a shift in covariance over various scales in
the data. The lag argument may also be used to specify different lags for
different decomposition levels.

> wavCovariance( sunl, sun2, lag = c(20, 30, 40) )

MODWT wavelet covariance of x and y
Wavelet: s8
Length of series: 1024
Number of levels: 7
Boundary correction rule: periodic
Filtering technique: convolution
Scales:
di d2 d3 d4 d5 d6 47

1 2 4 8 16 32 64

Lags:
dl d2 d3 d4 d5 d6 d7
20 30 40 40 40 40 40

Notice that if the length of the lag vector is less than the number of de-
composition levels, then the the last lag is replicated accordingly.
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Unbiased Wavelet Covariance
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FIGURE 4.3. The discrete wavelet covariance of the sun-spots
imposed lag ¢ = 75 for each decomposition level.
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Wavelet-Based Analysis of Fractionally
Differenced Processes

In recent years there has been considerable interest in using stochastic pro-
cesses with so-called ‘power-law’ or ‘fractal’ properties as models for various
financial, biomedical and geophysical time series. Specific applications for
these processes include

o forward premiums, interest rate differentials and inflation rates [Bai96];
o voltage fluctuations across cell membranes;

e density fluctuations in sand passing through an hour glass;

o traffic fluctuations on Japanese expressway;

¢ impedance fluctuations in geophysical borehole;

¢ fluctuations in the rotation of the earth; and

e X-ray time variability of galaxies.

The basic idea behind such processes is that their spectral density func-
tions (SDFs) vary as a power law over certain ranges of frequencies. Early
attempts (dating from the 1960s) at defining stochastic processes that cap-
ture these ideas include fractional Brownian motion (FBM) and fractional
Gaussian noise (FGN), both of which have seen wide usage. In the early
1980s, Granger and Joyeux [GJ80] and Hosking [Hos81] introduced a flexi-
ble class of models known as fractionally differenced (FD) processes. An FD
process can be regarded as an extension to an autoregressive, integrated,
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moving average model in which the order of integration is allowed to as-
sume non-integer values, and the orders for the autoregressive and moving
average processes are both set to zero. FD processes capture the power-law
and fractal ideas in a flexible and tractable manner and have the following
advantages over FBM and FGN.

e UNLIMITED POWER LAW EXPONENT RANGE. Both FBM and FGN are

stochastic power law processes because their SDFs are approximately
proportional to |f|* at low frequencies, where « is the exponent of
the power law. For FBM, this exponent is limited to the open interval
(-3, -1); for FGN, it is limited to (—1,1). Neither process actually
includes the case & = —1. Interestingly enough, this exceptional case
seems to occur quite often in practical applications [BLW94] and is
refered to in the literature as (pure) 1/f noise, pink noise and flicker
noise. An FD process is also a stochastic power law process, but its
exponent can assume any real-value, including the important case
a=-1.

MODEL CONTINUITY. While practitioners have been tempted to group
FBM and FGN processes together in an attempt to obtain coverage
of power laws ranging from —3 up to 1, the FGN and FBM processes
do not smoothly transition into one another at the @ = —1 boundary
due to a discontinity in their SDFs at high frequencies. This discon-
tinuity can lead to subtle problems in model selection. FD processes
have no such discontinuity. In addition, an FD process is closed un-
der differencing operations; i.e., if {X;} is an FD process and if we
define Y; = X; — X¢_1, then the process {Y;} is also an FD process.
By contrast, differencing an FGN or FBM process will not yield the
same type of process. Because differencing plays such a prominent
role in time series analysis, FD processes are thus more flexible and
tractable as models.

TRACTABLE TIME AND FREQUENCY DOMAIN CHARACTERIZATIONS.
In contrast to FBM and FGN processes, an FD process has simple
expressions for both its SDF and (when stationary) its autocovari-
ance sequence (ACVS). This means that both the SDF and ACVS
of the FD processes can manipulated analytically and also readily
computed without having to approximate any infinite summations
(as occurs in the expression for the SDF for FGN).

MODEL FLEXIBILITY. Both autoregressive and moving average com-
ponents can be added to an FD process to provide additional model-
ing flexibility, leading to the well-known class of autoregressive, frac-
tionally integrated, moving average (ARFIMA) models [Ber94}. This
flexibility is sometimes needed to model the high frequency content
of measured data, which is often contaminated by exogenous noise
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sources. Similar extensions could be made to FBM and FGN pro-
cesses, but such additions would further complicate their SDFs and
ACVS:s.

In the remainder of this chapter, we first give a definition for FD processes
(85.1) and then describe wavelet-based schemes for estimating the parame-
ters of this process in a flexible manner (for further details, see Chapters 7
and 9 of Percival and Walden, 2000, and Constantine et al. [CPRO1], upon
which the material that follows is based).

5.1 Definition of a Fractionally Differenced Process

The easiest way to define an FD process is via its SDF. Let § be any real-
valued number, let 02 > 0, and let Z denote the set of all integers. The
stochastic process {Xt,t € Z} is called an FD(4, o?) process if it possesses
an SDF given by

Sx(f) = T U112 6.1

X |2 sin (7 f)|? - '

An FD process thus depends on two parameters. The first, 4, is called the
fractionally differenced parameter and determines the shape of the SDF;
the second, o2, is called the innovations variance and sets the level (height)
of the SDF. When & < 1/2, an FD process is stationary and has an ACVS
{sx.r,T € Z} that can be conveniently obtained by first computing

a?T(1 — 26)
r2(i-4)°

where I'(-) is Euler’s gamma function [AS64], and then recursively using
the formula

sx,0 = var {X;} =

7+6-1
SX,r = SX,7-17""_ ¢
T—46
for 7 = 1,2,... (this also gives us the values of sx,r when 7 < 0 since
sx,r = Sx,—r). When & > 1/2, we obtain a class of nonstationary processes
that are stationary if {X;} is differenced d = [ 4 1/2| times, where lz] is
the greatest integer less than or equal to z; i.e., while {X:} is nonstationary,

the process
. (d
vi=Y () 0ixes

k=0
is stationary (thus Y; = X; — X;—; when d = 1, Y; = X¢ — 2X¢—1 +
X;—o when d = 2, and so forth). If we use the small angle approximation
sin(z) &~ z, we see from Equation (5.1) that the SDF for an FD(4,02)
process approximately obeys a power law process, i.e., Sx(f) o |fl|*, at
low frequencies with o = —2§ (the error in this approximation is quite
small for |f| < 1/8).
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5.2 Wavelet-Based Estimation of FD Parameters

Suppose that we have a time series that can be regarded as a realization
of a portion X = [Xo, X1, ..., Xn-1]T of an FD(5, o2) process, where ¢ is
presumed to be unknown and is to be estimated from the time series. If
the FD process is Gaussian, then arguably the best estimator for 4 is the
maximum likelihood estimator (MLE); however, this estimator can be very
difficult to compute even for moderate sample sizes [Ber94]. Here we con-
sider three computationally efficient schemes for estimating the parameter
§ via a wavelet transform of the time series. The first two schemes make use
of the fact that the relationship between the variance of the wavelet coeffi-
cients across scales is dictated by § in such a manner that we can construct
a least squares estimator (LSE) of § (Abry et al. [AGF93, AG95], Abry and
Veitch [AV98] and Jensen [Jen99b] consider similar estimators). The third
scheme is a wavelet-based approximation to the MLE of 6 (Wornell and
Oppenheim [W092], Wornell [Wor93, Wor96], Kaplan and Kuo [Kap93],
McCoy and Walden [MW96] and Jensen [Jen99a, Jen00] discuss related
wavelet-based MLEs). The first LSE and the MLE make use of the entire
time series and hence are called ‘block dependent’ estimators; by contrast,
the second LSE utilizes only certain coefficients that are colocated in time,
and we refer to it as an ‘instantaneous’ estimator.

5.2.1 Block dependent FD model parameter estimators
Block Dependent Weighted Least Squares Estimator

Let d; be a vector of length N containing the MODWT wavelet coefficients
for scale ;. Here we develop a weighted LSE (WLSE) of é based upon an
estimator of the variance of the nonboundary (interior) coefficients in d;
over a range of scales 7; given by Jo < j < J1 (the selection of Jo and J;
is application dependent). Under the assumption that the length L of the
wavelet filter is chosen such that L/2 > |é + 3], these nonboundary coef-
ficients are a portion of a stationary process obtained by filtering the time
series with the equivalent MODWT wavelet filter hj. Since the squared
gain function for hj; is given by ﬁj,{,( f), the SDF for the nonboundary
coefficients is given by #;,r(f) Sx(f), and hence their variance can be
expressed as

1/2

Vi (1)) = var{W;,} = p #H; .(f) Sx(f) df. (5.2)

Using the approximation that ﬁj' 1(f) is an ideal bandpass filter over |f| €
[1/27%1,1/27] and taking into consideration the even symmetry of SDFs,
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an approximation to the wavelet variance is given by

1727
Az [ Sx(f) df (53)
1/2i41
For FD processes, we have
1/27 2

V(1) ~ 2 / % g (5.4)

1/29+1 |2sin (7 f)[28
When j > 3, so that sinwf ~ 7 f, Equation (5.4) can be approximated by
vy (15) ~ o2 €(8) 737, (5.5)

where 8(8) = 7~2(1—226-1)/(1—25). Equation (5.5) suggests that a direct
means of estimating 4 is to fit a least squares line to the logarithm of an
estimate of the wavelet variance, say 9% (7;). The slope of the line, say B,
that best fits In(?%(7;)) versus In(7;) in a least squares sense is related
to the FD parameter by § = (8 + 1)/2 and the power law exponent by
a=—(8+1).

Given a time series of length N, we can obtain an unbiased MODWT-
based estimate of the wavelet variance by defining

L=
() == Y, i (5.6)
M; t=L;-1
where 1\7[; =N- f,,- + 1 is the number of MODWT nonboundary wavelet
coefficients. As a caveat, it should be noted that the wavelet variance es-
timates are somewhat sensitive to the order L of the wavelet filter used in
the analysis. In particular, there can be a significant bias in estimating &
(and hence @) if we use the Haar wavelet filter (for which L = 2) [PW00].
This bias can be attributed to a spectral leakage phenomenon and can be
attenuated by increasing L. In practice the choice L = 8 often works well.
As discussed in §4.3, the distribution for ?% () is approximately that of
a random variable (RV) given by x3, v%(7;)/nj, where x2, is a chi-square
RV with n; degrees of freedom. Define

Y(r;) = In(0% (7)) — 1,[)(%7) + ln(%), (5.7)

where () is the digamma function. The properties of the chi-square dis-
tribution dictate that

E{Y(r;)} = In (v} (7)) and var{Y(r;)} = ¥'(;/2), (5.8)

where 9'(-) is the trigamma function. By assuming the approximation af-
forded by Equation (5.5), we can now formulate a linear regression model
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Y (r;) = v+B1n(7;)+e;, where e; = In (9% (1) /v (1)) =¥ (n;/2) +n (1;/2)
defines a sequence of errors, each with zero mean and variance ¥'(n; /2). If
we take into account the inhomogeneity in the variance in these errors, we
arrive at the WLSE of the slope term § given by

Butee = S wi S w;In(r)Y (1;) = 3 w;In(ry) ijY(Tj), (5.9)
¥ w; Lw; (1) = (Zw; In(75))?

where w; = [¢'(n;/2))7?, and all sums are over j = Jo, ..., J1. The weighted
least squares estimate of the FD parameter is then

1 -
6wlse = ‘i(ﬁwlse + 1)- (510)

If we ignore the possible correlation between the error terms (which we can
decrease by increasing L), the variance of Buise is given by

Dwj

Var{Bwl e} ;
) Y w; YwjIn®(r) — (T w;sIn(75))?
(5.11)
and thus the variance of the 3wgse is given by
var{Buise} = -}ivar{ﬁw,se}. (5.12)

Monte Carlo studies indicate that Equation 5.11 tends to overestimate the
variability in Byise somewhat and thus can be regarded as a conservative
upper bound [PWO00].

Block Dependent Maximum Likelihood Estimator

Wavelet-based maximum likelihood techniques can be used in harmony
with an FD model as another means of obtaining estimates for FD param-
eters. Using the DWT is advantageous in that it is known to decorrelate
long memory FD and related processes, forming a near independent Gaus-
sian sequence, and thus simplifying the statistics significantly [CPGO00a).
The basic idea is to formulate the likelihood function for the FD param-
eters § and o2 directly in terms of the interior DWT wavelet coefficients.
Let dy bean M =5 y M; point vector containing all of the interior DWT
wavelet coefficients over a specified range of scales j = Jo,...,J1. We can
write the exact likelihood function for § and o2 as
) e—d,ngl‘d, /2

[,(6, O¢ ld[) = W’ (513)
where 4, is the covariance matrix of dy, and [Eq,| is the determinant of
T4,. Note that the dependence of the likelihood function on 8 and o2 is
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through T4, alone. Under the assumption that the wavelet coefficients in
d; are approximately uncorrelated, Equation 5.13 can be approximated by

¢+u /2C;(8,02))

£(5,02|d)) = H H @G G (5.14)

]Joto

where C;(6,02) is an approximation to the variance of d;: given by the
average value of the SDF in Equation 5.1 over the nominal pass-band
(1/47j,1/27;] for the equivalent wavelet filter h;;. The estimate bmie Of
8 is obtained by maximizing £(6,02|d) with respect to 6. Equivalently we
can consider the reduced (natural) log likelihood function

J1
i(6|dy) = MIn(@2(8)) + Y M; In(C;(9)), (5.15)
j=Jo
where C}(8) = C;(4,02)/o%, and
M;—1

&3(6) M Z C' 6) Z dit+ L (5~16)

(see [PW00] for explicit details on the development of the reduced (natu-
ral) log likelihood function using the DWT coefficients). Minimizing Equa-
tion (5. 15), which is a function of & alone, yields the maximum likelihood
estimate 8,nze, after which we can compute the corresponding estimate for
o2 by plugging Smie into Equation 5.16.
Under the assumption that § € [—~1/2, L/2], the estimator bmie for large
M is approximately Gaussian distributed with mean é and variance

”?m,e*Z[ZM‘ﬁZ——(ZM%) ] , (5.17)

=Jo
where

= 40? 172 n(2sin(~ f))
9 = _m/o HJ,L(f)W df
_ 2 P Qsin(r)
C;(Smle) 1/47; [2 Sin(1rf)]25mu

(see [CPGOODb] for details). In practice, the right-hand integral can be ap-
proximated through either (i) numerical integration or (ii) a Taylor series
expansion about the mid-band frequencies for levels j = 1,2 along with
direct integration using a small angle assumption for j > 2. The approxi-
mation above is based upon the view that the wavelet transform forms an
octave band decomposition. There is generally a large increase in computa-
tional speed when using this bandpass approximation with relatively small
loss of accuracy.

Q

(5.18)
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5.2.2 Instantaneous FD model parameter.estimators

The block dependent estimators we formulated in 5.2.1 depend upon the
entire time series X, ..., Xn—1. For time series whose statistical properties
are evidently evolving over time, the assumptions behind this estimator
are violated, and it is problematic to use this estimator on the entire times
series. If, however, we can divide the time series up into blocks within
which we can assume that the data are the realization of an FD process
(with parameters that are now allowed to vary from one block to the next),
we can apply the WLSE estimator on a block by block basis. In practice,
each of the blocks will contain the same number of points, so we can now
consider N to be the size of each block rather than the length of the entire
time series. The choice of N is usually subjective and thus open to question,
s0 it is useful to have some means of verifying that a particular choice is
appropriate. We can do so by formulating an ‘instantaneous’ estimator
that is independent of N and that can be used to check for departures
from statistical consistency within a proposed block size.

Instantaneous Least Squares Estimator

The idea behind an instantaneous least squares estimate of 4 is to use only a
single wavelet coefficient from each scale; i.e., we only use d?,tj to estimate

v% (), where t; is the time index of the j** level MODWT coefficient
associated with time ¢ in {X;}ir5". The time index t; can be meaningfully
determined only if (approximate) linear phase wavelet filters are used. With

this substitution, the time dependent form of Equation (5.10) becomes

8y SIn()Yi(r) = Do) DY)
28 S 03 (r) - (T In()) |

Bise.t
(5.19)
where Ay = J; — Jo + 1 and all sums are over j = Jo, ..., Ji and
Ye(r;) =In(dj,;) = $(1/2) — n(2). (5.20)
To decrease the variability of the estimates A should ideally be set to be
as large as is feasible.

Instantaneous Maximum Likelihood Estimator

To form an instantaneous maximum likelihood estimator, we alter slightly
the block dependent reduced log likelihood function (Equation 5.15) so that
(only) a single interior wavelet coefficient is used at each scale:

J1
i(6|d;) = A7In(a2(6)) + Y, In(C;(8)), (5.21)

j=Jo
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where C}(8) = Cj(6,02)/0%, and

J1

72(8) = A%— 3 5,1(—5) S &, (5.22)

j=Jo 17 j=Jo

where t; is the j** level (zero phase shifted) MODWT coefficient that is
associated with time t and Ay = J1 — Jo +1 is the number of interior
MODWT coefficients at time t; (assuming Jo < J1 and that level Jy con-
tains at least one interior wavelet coefficient at time ¢;).

5.2.8 The WaveletFDP Object

The wavFDPBlock and wavFDPTime functions estimate the block depen-
dent and instantaneous FD process model parameters, respectively, of a
real-valued uniformly-sampled time series and each returns an object of
class WaveletFDP. Several methods are available to the user to view, sum-
marize, and access the data contained in a WaveletFDP object:

Summary Operator Methods:

print Prints useful information regarding the FD model pa-
rameter estimation including:

e A summary of the estimated FD parameters: 4,
var{d}, and o2.

e The method used to estimate the FD process
model parameters.

e Information regarding the handling of boundary
coefficients.

e Decomposition levels over which the estimates
were calculated.

o The search range of the FD parameter (4).

e Information regarding the wavelet transform fil-
ters.

plot Plots the estimates FD parameter &;. For instanta-
neous LSEs, an optional numeric constant can be used
as a second argument to the plot function in order to
display the confidence intervals about a known value
of the FD parameter §. This method is only applicable
for instantaneous estimates produced by the wavFDP-
Time function.
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Data Access Methods

$ Use to access specific fields of the class object. A list
of accessible fields can be generated using the names
function.

5.2./ An ezample: FD parameter estimation of a simulated
FD realization

Consider the 512 point FD(0.45,1.0) realization:

> plot( fdp045, type = "1" )

[qU
b

9 100 200 300 400 500

FIGURE 5.1. A 512 point realization of a FD process whose model parameters
are constant: 6 = 0.45, o2 = 1.0.

Figure 5.1 shows the time history of the FD realization. Since we know the
true values of the FD model parameters, we can scrutinize the accuracy
of block dependent and instantaneous estimators. Let us first examine the
block dependent estimators. To perform a weighted least squares estimation
we use the wavFDPBlock command as follows:
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> wavFDPBlock( £fdp045, lev=1:6, est="wlse",
+ boundary="unbiased", edof=1 )

Block-dependent FD parameter estimation of £dp045

FD parameter estimate (delta): 0.37451
vardelta estimate: 0.00121
Innovations variance estimate: NA
Estimator: WLSE

Levels: 123456

Boundary mode: unbiased

EDOF mode: 1 ’

Delta range: -10 10

Wavelet: s8

Length of series: 512

Number of levels: 6

Boundary correction rule: periodic
Filtering technique: convolution

We see that the unbiased WLSE of delta is close to the known value of
0.45. But perhaps we could do better with the biased WLSE, this time
over levels 2 — 6:

> wavFDPBlock( fdp045, lev=2:6, est="wlse",
+ boundary="biased" )

Block-dependent FD parameter estimation of £dp045

FD parameter estimate (delta): 0.4432
vardelta estimate: 0.00206
Innovations variance estimate: NA
Estimator: WLSE

Levels: 2 345 6

Boundary mode: biased

EDOF mode: 1

Delta range: -10 10

Wavelet: s8

Length of series: 512

Number of levels: 5

Boundary correction rule: periodic
Filtering technique: convolution
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Here, the biased WLSE does much better job than the unbiased case. Now
we examine the blocked MLE technique using a stationary FD model. Un-
der a stationary model, the FD parameter is assumed to be in the stationary
regime, i.e. § < 0.5 which (in this case) we know to be true:

> wavFDPBlock( fdp045, lev=1:6, est="mle",
+ boundary="stationary" )

Block-dependent FD parameter estimation of fdp045

FD parameter estimate (delta): 0.46502
vardelta estimate: NA

Innovations variance estimate: 1.07116
Estimator: MLE

Levels: 1 23456

Boundary mode: stationary FD process model
Delta range: -10 10

Wavelet: s8

Length of series: 512

Number of levels: 6

Boundary correction rule: periodic
Filtering technique: convolution

The MLE using a stationary model does an excellent job in estimating
model parameters. For the general case, however, we will not know the
value of § a priori. In that case, let us use the stationary-nonstationary FD
model which carries no restriction on the value of 4:
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> wavFDPBlock( fdp045, lev=1:6, est="mle",
+ boundary="nonstationary" )

Block-dependent FD parameter estimation of fdp045

FD parameter estimate (delta): 0.4459
vardelta estimate: NA

Innovations variance estimate: 1.0846
Estimator: MLE

Levels: 123456

Boundary mode: stationary-nonstationary FD process model
Delta range: -10 10

Wavelet: s8

Length of series: 512

Number of levels: 6

Boundary correction rule: periodic
Filtering technique: convolution

The result indicates that the stationary-nonstationary model also does an
excellent job in estimating the FD model parameters.

Now we turn our attention to the instantaneous methods. We perform
biased and unbiased instantaneous least squares estimates as follows:

> wavFDPTime( fdp045, lev=1:6, est="lse", biased=T )
Instantaneous FD parameter estimation of fdp045

Mean of FD parameter estimates (deltas): 0.45679
Mean of vardelta estimates: 0.14673

Mean of innovations variance estimates: NA
Estimator: LSE

Levels: 1 23456

Boundary mode: biased

Chi-squared DOF: 1

Delta range: -10 10

Wavelet: s8

Length of series: 512

Number of levels: 6

Boundary correction rule: periodic
Filtering technique: convolution
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> 1se.unbiased <- wavFDPTime( f£dp045, lev=1:6, est='"lse",
+ biased=F )
> lse.unbiased

Instantaneous FD parameter estimation of fdp045

Mean of FD parameter estimates (deltas): 0.36536
Mean of vardelta estimates: 0.6948

Mean of innovations variance estimates: NA
Estimator: LSE

Levels: 123456

Boundary mode: unbiased

Chi-squared DOF: 1

Delta range: -10 10

Wavelet: s8

Length of series: 512

Number of levels: 6

Boundary correction rule: periodic
Filtering technique: convolution

To plot the results we invoke the plot method:
> plot( lse.unbiased )

Figure 5.2 shows the result. The shaded areas about the estimates are the
95% confidence intervals based on chi-square distribution assumption on
the interior wavelet coefficients. Since we know the true value of § we can
force the confidence intervals to be centered about § = 0.45:

> plot( lse.unbiased, mean.delta = 0.45 )

Figure 5.3 shows that the instantaneous LSE do a good job in estimat-
ing the true value of the time series with the exception of the endpoints
which are more variable due to a lesser number of degrees of freedom. The
endpoints of the MODWT has fewer interior wavelet coeflicients at a par-
ticular time than do the points located more towards the middle of the
sequence. This is and unavoidable and so we expect more variability near
the endpoints.

The instantaneous estimators are inherently more variable than the blocked
estimators. However, we can smooth out the instantaneous estimates by us-
ing more degrees of freedom in the estimates. What we are doing here is
to average the energy of the MODWT coefficients around a given point
in time, using multiple points instead on one. The more points that we
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FIGURE 5.2. Unbiased instantaneous FD parameter estimation of a FD( 0.45,
1.0 ) process. The 95% confidence intervals are displayed as the shaded covering
the estimates.
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FIGURE 5.3. Unbiased instantaneous FD parameter estimation of a FD( 0.45,
1.0 ) process. The 95% confidence intervals are displayed as the shaded covering
the estimates based on the known value of § = 0.45.
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use, the smoother the estimates at the price of being less localized in time.
These estimates are known as localized estimates and lie somewhere be-
tween instantaneous and block dependent estimators. To illustrate, let us
develop localized MLEs of the fdp045 sequence with increasing DOFs:

dofs <- 0:3

deltas <- lapply(dofs,function(i)

wavFDPTime (fdp045, lev=1:6, est="lse", dof=i )$delta )
names( deltas ) <- paste(2%(dofs)+1,"DOF")
stack.plot( deltas, same.scale = T, zeroline=T )

vV V + V V
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3DOF bttt ottt s NSOV
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7DOF Ao : PSS
o 100 200 300 400 500

FIGURE 5.4. Localized instantaneous least squares estimates of the fdp045 se-
quence using (from top to bottom) 1,3,5, and 7 chi-square degrees of freedom.

Figure 5.4 shows the effects of the local smoothing on the instantaneous FD
parameter estimates. The DOFs are increased through the dof argument
of the wavFDPTime function, where dof represents the DOF order, K. The
number of degrees of freedom is equal to 2 x K + 1) so the DOFs used in
Fig. 5.4 (from top to bottom) are 1,3,5, and 7, respectively. The sample
mean and variance of localized LSE of § are calculated via:
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> lapply( deltas, function(x) mean(x,na.rm=T) )
$"1 DOF":
[1] 0.3653601

$"3 DOF":
(1] 0.4133021

$"5 DOF":
[1] 0.3936822

$"7 DOF":
[1] 0.3770256

> lapply( deltas, function(x) var(x,na.method="omit") )
$"1 DOF":
[1] 0.8556084

$"3 DOF":
[1] 0.1669712

$"5 DOF":
[1] 0.09127696

$"7 DOF":
[1] 0.06862063

We see that the variance of the estimates goes down with an increase in
DOF order, but at the cost of introducing more bias in the mean of the
estimates. A similar effort using a maximum likelihood estimator shows
the sample mean and variance trends, but the bias between the true and
estimated values of 4 is less than that of the LSE:
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> deltas <- lapply{(dofs,function(i)

+ wavFDPTime (fdp045, lev=1:6, est="mle", dof=i Y$delta )
> names( deltas ) <- paste(2x(dofs)+1,"DOF")

> lapply( deltas, function(x) mean(x,na.rm=T) )

$"1 DOF":

[1] 0.3729772

$"3 DOF":
(1] 0.4416434

$"5 DOF":
[1] 0.4325607

$"7 DOF":
{1] 0.4151354

> lapply( deltas, function(x) var(x,na.method="omit") )
$"1 DOF":
{1] 1.022432

$"3 DOF":
(1] 0.2421365

$"5 DOF":
(1] 0.124924

$"7 DOF":
[1] 0.09654555

5.2.5 Ezample: analysis of aerothermal turbulence data

To demonstrate the potential of the S+Wavelets module, we examine block
dependent and instantaneous estimates of a 7.5 million point aerothermal
turbulence sequence known as the aero series (see [CPRO1] for details). Due
to the large amount of data, a MA(g,r) filters (moving average using win-
dows of length g with an overlap of r points) was used for purposes of display
and comparison of results. Figure 5.5 shows the aero series smoothed with
a MA(10000,0) filter. Typical of turbulence data, the aero series exhibits
seemingly random fluctuations at various scales and times.

The goal of the research was to quantify these random fluctuations as a
function of space and scale using block dependent FD parameter estimators.
A secondary goal was to quantify the departure of the FD parameter (6)
estimates from the theoretical Kolmogorov turbulence value of § = 5/6.
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FIGURE 5.5. Aerothermal turbulence series.

Figure 5.6 shows such a departure via (smoothed) WLSE of § over scales
16 — 75 and 79 —71; (here the data is plotted as the spectral density function
(SDF) power law exponent o which is related to the FD parameter by
a = —26). Note the apparent wide range of agj';e and d;,”,‘ff, which roughly
span values appropriate for stationary white noise up to nonstationary
random walk noise.

The results clearly suggests that a single (Kolmogorov) exponent is not
an adequate description of this aerothermal turbulence data as might be
incorrectly construed from conventional Fourier-based methods. Conven-
tionally, for example, the SDF power law exponents are estimated directly
from an estimate of the SDF for the data. For example, the slope of the
SDF on a log-log scale provides a direct estimate of . Figure 5.7 shows
the SDF of the entire aero series, computed by partitioning the aero se-
ries into 216 point blocks, forming a spectral estimate for each block and
then averaging the spectral estimates together. The average SDF portrays a
strong Kolmogorov turbulence slope of a = —5 /3 over many octaves. This
global approach masks the fact that there are significant deviations from
the —5/3 law locally in time and hence does not accurately portray the
dynamics of a. We could, of course, track the power law estimate of each
block as time unfolds, but we would then need some scheme for partition-
ing the frequencies into regions over which a single power law is applicable.
If we use a partitioning scheme that is essentially the same as what our
wavelet methodology yields, the work of McCoy et al. [MW96] shows that
wavelet-based estimates of & have better mean square error properties than
do those based upon the SDF.

5.3 Time-Varying FD Process Simulation

Time-varying fractionally differenced (TVFD) processes can serve as useful
models for certain time series whose statistical properties evolve over time.
The spectral density function for a TVFD process obeys a power law whose
exponent can be time dependent. In contrast to locally stationary or locally
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FIGURE 5.6. Block-dependent weighted least squares estimates of the FD pa-
rameter (&) for the aero series. The § estimates are smooth with a moving average
filter and mapped to the SDF exponent « using the relation a = —24. The esti-
mates are performed over scales 76 — 73 and 79 — 711.




96 5. Wavelet-Based Analysis of Fractionally Differenced Processes

10 > T Y NARSS
it %l e 7 el sl T T8 T2
10' F : : 4
10° F ~ N E
Na ~y
- H :
10 F "\’\lﬂl‘. 3
107k ‘ .
o ]
D107 ]
c E
107t A
10k 4
"
10 F E
1077y — - aero (average) -
w— FDP (5=5/6) |:
H — PPL (@ =-5/3) | : : : : : : : : :
10—6 1 PR aaal - " _—t | - — ioa
107 107 107 10 10°

Inf

FIGURE 5.7. Averaged estimated SDF for aero series and the theoretical SDF's
for an FD process and pure power law (PPL) model of fully developed Kol-
mogorov turbulence with an infinite inertial range. The FDP and PPL curves are
purposefully offset from the average SDF of aero series so that their In-ln SDF
slopes may be easily compared over a broad range of scale. The vertical divisions
represent the octaves over which the wavelet coefficients at scale 7; are nominally
associated.
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self-similar processes, the power law exponent for a TVFD process is not
restricted to certain intervals, which is of practical importance for modeling
time series of, e.g., atmospheric turbulence.

It is possible to produce exact realizations of Gaussian TVFD processes
(whose parameters fluctuate in an arbitrary manner) using either a modi-
fied Cholesky decomposition or a circulant embedding scheme [PCO02]. Use
of these exact methods ensures that Monte Carlo studies of the statistical
properties of estimators for TVFD processes are not adversely influenced
by imperfections arising from the use of approximate simulation methods.

Using the wavFDPSimulate function, you can generate finite length real-
izations of a TVFD process. For example, suppose we wish to emulate the
dynamics of the aerothermal turbulence sequence shown in Fig. 5.5 using a
multi-linear approximation to the WLSE of & (Fig. 5.6) for scales 7 — 7g:

delta <- c(rep(1/4,100) ,seq(1/4,5/6,1en=40) ,rep(5/6,410),
seq(5/6,0,1len=100) ,seq(0,1/2, len=374))

innov <- rep(1,length(delta))

tvfd <- wavFDPSimulate( delta=delta, innov = innov )
.par( mfrow=c(2,1) )

plot( delta, type="1")

plot( tvfd, type="1")

VvV V.V V V 4V

The piecewise linear approximation of the aerothermal WLSE of §; starts
out in the stationary region (6 < 0.5), then evolves into a nonstationary
region which is intended to mimic Kolmogorov turbulence (§ = 5 /6), fol-
lowed by a return to a stationary region. Although &, fluctuates greatly, the
resulting TVFD is smooth in the transitional regions of 6. This smooth tran-
sitional behavior coupled with the knowledge that the underlying method-
ology is statistically exact, helps to establish the efficacy of the wavFDP-
Simulate as a TVFD simulator.
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FIGURE 5.8. Simulating aerothermal turbulence dynamics. In the top plot: a
crude piecewise linear approximation to the variations observed in the WLSE
of aerothermal measurements (Fig. 5.6). In the bottom plot, the corresponding
time-varying FD process realization generated by the wavFDPSimulate function.
The innovations variance was set to unity.
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Appendix A

Dataset Reference

Description of S+Wavelets data.

D.table.critical

aero

Table of critical D-Statistics. The D-statistic denotes
the maximum deviation of sequence from a hypothet-
ical linear cumulative energy trend. The critical D-
statistics define the distribution of D for a zero mean
Gaussian white noise process. Comparing a D-statistic
to the corresponding critical values provides a means
of quantitatively rejecting or accepting a linear cumu-
lative energy hypothesis. The D.table critical table con-
tains critical D-statistics for a variety of sample sizes
1 < N < 127 and significances 10%, 5%, and1%. The
table was developed using the average of 3 repititions,
where for each repetition 10000 Monte Carlo simula-
tions of a zero mean Gaussian white noise process were
performed.

Atmospheric aerothermal turbulence data. This data
is collected by a hot wire probe extended from an air-
craft flying at a constant altitude at a constant speed.
The current in the wire is proportional to temperature,
5o the series of measurements is indirectly related to
temperature. The analog voltage data was sampled at
12 kHz and fed through a highpass fourth order But-
terworth filter with a cutoff frequency around 0.001
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Hz to eliminate the DC bias. The aero dataset is thus
the AC voltage (proportional to temperature) with a
spatial resolution of approximately 2 cm.

aero

0.000.020.040.060.08

atomclock

ecg

FIGURE A.l. The aero series.

Cesium beam atomic clock data. This series represents
the difference in time between a cesium beam atomic
clock and an official time scale known as UTC(USNO)
maintained by the US Naval Observatory, Washington
DC. The UTC portion of the USNO series refers to
coordinate universal time which is used as an inter-
national time standard. Negative values in the result-
ing (difference) series represents a lag in time relative
to the UTC(USNO) standard. The differences in time
were recorded at the same time for consecutive days
in the 1970s resulting in a sampling interval of 1 day.
The amplitude units are expressed in microseconds.

-0.02-0.01 0.0 0.01

0 200 400 600 800 1000

FIGURE A.2. The first difference of the atomclock series.

Electrocardiogram Data from the Human Heart. This
2048 point ECG data set represents approximately 15
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beats of a normal cardiac rhythm for humans. This
sequence is sampled at 180 Hz and is in units of mil-
livolts. This series was collected and supplied by Dr.
G. Bardy M.D. and Dr. P. Reinhall of the University
of Washington.

ECG
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FIGURE A.3. The ecg series.
fdp045 Fractionally Differenced Process Data. These data rep-
resent a 512 point realization of a fractionally differ-
enced (FD) process with an FD parameter of 0.45 and
unit FD innovation variance.
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FIGURE A 4. The fdp045 series.
nile Yearly Nile river level minima. These data represent
the measurements of the minimum yearly water level
of the Nile over the years 622 to 1284 as recorded at
the Roda gauge near Cairo.
ocean Vertical shear ocean data. This data is collected by

a instrument dropped over the side of a ship in the
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10 11 12 13 14

200 400 600

FIGURE A.5. The nile series.

ocean. As the instruments descends vertically in the
water it collects information as a function of depth.
Specifically, it is a record of the horizontal (shear) ve-
locity of the water measured in 0.1 increments start-
ing from a depth of 489.5 meters and ending at 899.0
meters. This series was collected and supplied by Mike
Gregg, Applied Physics Laboratory, University of Wash-
ington.

smalltsl

smallts2

solarmag

FIGURE A.6. The ocean series.

A test time series. Used for various transform tests
in Percival and Walden’s, “Wavelet Methods for Time
Series Analysis” [PW00).

A test time series. Used for various transform tests
in Percival and Walden’s, “Wavelet Methods for Time
Series Analysis” [PW00].

Solar magnetic field data. This data was measured by
the Ulysses spacecraft as it traversed heliographic lat-
itudes 43 deg S (day 338, 1993) to 62 deg S (day 144,
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FIGURE A.7. The smalltsl series.
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FIGURE A.8. The smallts2 series.
1994) with a corresponding heliocentric range of ap-
proximately 4 to 3 astronomical units, respectively (an
astronomical unit is defined as the mean distance be-
tween the Earth and the Sun). The data are daily
averages of the magnetic field strength measured in
nanoteslas (nT).
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FIGURE A.9. The solarmag series.
subtidal Subtidal sea levels in the Pacific Ocean. The time se-

ries is a low-passed version of hourly water level ob-
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FIGURE A.11. The posy image.

105
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Appendix B

Function Reference

The following pages describe the functions in alphabetical order.

D.table Critical D-statistic table generation.

Usage D.table(n.sample = c(127, 130), significance = c(0.1,
0.05,0.01), lookup = T, n.realization = 10000, n.repetition
= 3, tolerance = le-6)

Description The D-statistic denotes the maximum deviation of se-
quence from a hypothetical linear cumulative energy
trend. The critical D-statistics define the distribution
of D for a zero mean Gaussian white noise process.
Comparing the sequence D-statistic to the correspond-
ing critical values provides a means of quantitatively
rejecting or accepting the linear cumulative energy hy-
pothesis. The table is generated for an ensemble of
distribution probabilities and sample sizes.

Optional Arguments

n.sample A vector of integers denoting the sample sizes for which
critical D-statistics are created. Default: ¢(127,130).

significance A numeric vector of real values in the interval (0,1).
The significance is the fraction of times that the linear
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cumulative energy hypothesis is incorrectly rejected. It
is equal to the difference of the distribution probability
(p) and unity. Default: ¢(0.1, 0.05, 0.01).

lookup A logical flag for accessing precalculated critical D-
statistics. The critical D-statistics are calculated for a
variety of sample sizes and significances. If lookup is
TRUE (recommended), this table is accessed. The ta-
ble is stored as the matrix object D.table.critical on
the S+Wavelets 2.0 workspace. Missing table values
are calculated using the input arguments: n.realization,
n.repetition, and tolerance. Default: TRUE.

n.realization An integer specifying the number of realizations to
generate in a Monte Carlo simulation for calculating
the D-statistic(s). This parameter is used either when
lookup is FALSE, or when lookup is TRUE and the
table is missing values corresponding to the specified
significances. Default: 10000.

n.repetition An integer specifying the number of Monte Carlo sim-
ulations to perform. This parameter coordinates with
the n.realization parameter. Default: 3.

tolerance A numeric real scalar that specifies the amplitude thresh-
old to use in estimating critical D-statistic(s) via the
Inclan-Tiao approximation. Setting this parameter to
a higher value results in a lesser number of summa-
tion terms at the expense of obtaining a less accurate
approximation. Default: 1e-6. '

Value A matrix containing the critical D-statistics correspond-
ing to the supplied sample sizes and significances.

References 1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000. Chapter 9.

See Also wavVarianceHomogeneity, D.table.critical.

Details A precalculated critical D-statistics object (D.table.critical)
exists on the S+Wavelets 2.0 workspace and was built
for a variety of sample sizes and significances using
3 repetitions and 10000 realizations/repetition. This
D.table function should be used in cases where specific
D-statistics are missing from D.table.critical. Note: the
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results of the D.table value should not be returned to
a variable named D.table.critical as it will override the
precalculated table that exists on the S+Wavelets 2.0
workspace.

An Inclan-Tiao approximation of critical D-statistics
is used for sample sizes n.sample > 128 while a Monte
Carlo technique is used for n.sample < 128. For the
Monte Carlo technique, the D-statistic for a Gaussian
white noise sequence of length n.sample is calculated.
This process is repeated n.realization times, forming a
distribution of the D-statistic. The critical values cor-
responding to the significances are calculated a total
of n.repetition times, and averaged to form an approx-
imation to the D-statistic(s).

Example

D.lookup <- D.table(significance = c(10,5,1)/100,
+ n.realization = 100, n.sample = 126:130, lookup = F)

as.signalSeries Converts various time series to an object of class

signalSeries.

Usage as.signalSeries(data, position = list( from =1, by =1,
units = "), from = NULL, by = NULL, to = NULL,
length.out = NULL, units = "7, title.data = " doc-
umentation = ””)

Description Converts numeric data to an object of class signalSeries

containing one dimensional data. The input data is
assumed to be uniformly sampled.

Required Arguments

data A numeric vector, matrix or an object of class ts (uni-
form sampling assumed). If a matrix, the longest first
row or column is extracted.

Optional Arguments
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position

from

to

by

length.out

title.data

documentation

units

na.rim

as.signalSeries

A list containing the arguments from, by and to which
describe the position(s) of the input data. All posi-
tion arguments need not be specified as missing mem-
bers will be filled in by their default values. Default:
list(from = 1, by = 1, units = NULL).

A list containing the arguments from, by and to which
describe the position(s) of the input data. All position
arguments need not be specified as missing members
will be filled in by their default values. Default: NULL.

A numeric containing the end point in data from which
the values should be extracted. This parameter must
coordinate with the position arguments and can be
used in combination with the by and to arguments.
The length.out argument should not be specified if
both the from and to arguments are specified. Default:
NULL.

a numeric containing the sampling rate at which the
values in data should be extracted. This parameter
must coordinate with the position arguments and can
be used in combination with the by, to, or length.out
arguments. This argument is not the same as the posi-
tion$by argument which denotes the sampling rate of
the original data. Default: NULL.

an integer containing the maximum number of values
to extract from data. Because data is a finite length
sequence, the actual number of values returned may
be less than that specified by this argument depending
upon the conditions imposed by the from and by argu-
ments. The length.out argument should not be speci-
fied if both the from and to arguments are specified.
Default: NULL.

a string representing the name of the input data. De-
fault: NULL.

a string used to describe the input data. Default: NULL.

A string denoting the units of the time series. Default:
empty string. '

A logical flag used to indicate if NaN values should be
removed from the input. Default: TRUE.
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Value an object of class signalSeries.
See Also signalSeries.
Example

## convert an explicitly developed numeric vector
x <- 1:10
as.signalSeries( x )

## now impose hypothetical positions on the data
as.signalSeries( x, pos=list(from = 0.3, by = 0.1) )

## extract the values from position 0.5 onward
as.signalSeries( x, pos=list(from = 0.3, by = 0.1),
+ from = 0.5 )

## extract the values from position 0.5 onward, but

## keep only the first 3 values of the extraction

as.signalSeries( x, pos=list(from = 0.3, by = 0.1),
+ from = 0.5, length = 3 )

## extract the values from position 0.5 onward

## and skip every other point (sample the data

## at 0.2 position intervals)

as.signalSeries( x, pos=list(from = 0.3, by = 0.1),
+ from = 0.5, by = 0.2 )

## simply return the first 4 values, and supply a title and
## some documentation comments to the data
as.signalSeries( x, length = 4, title = "Faux Data",

+ doc = "An example" )
wavBoundary Wavelet transform boundary coefficent identifica-
tion.
Usage wavBoundary(x)
Description A wavelet transform boundary coefficient is one sub-

ject to circular filter operations (or other boundary
treatments). Conversely, the interior transform coef-
ficients are those that are not affected by the im-
posed boundary treatment. The wavBoundary function
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separates the boundary coefficients from the interior
wavelet transform coefficients.

Required Arguments

x A DWT or MODWT transform object with class Wavelet-
Transform.

Value An object of class WaveletBoundary.

References 1. D. B. Percival and A. T. Walden, Wavelet Meth-

ods for Time Series Analysis, Cambridge Univer-
~ sity Press, 2000.

2. 1. Daubechies, Orthonormal Bases of Compactly
Supported Wavelets, Communications on Pure and,
Applied Mathematics, 41, 909-96.

See Also wavIndex, wavDWT, wavMODWT, wavShift.

Example

## calculate the MODWT of the sunspots series
y <- wavMODWT(sunspots)

## identify the boundary coefficients
x <- wavBoundary(y)

## plot the results

plot(x)
## obtain a summary
summary (x)
wavConfidencelLimits Confidence intervals for the unbiased and
blocked averaged discrete wavelet vari-
ance estimates.
Usage wavConfidenceLimits( variance, edof )
Description Given 7% (7;) are the time independent unbiased wavelet

variance estimates at scales 7; = 2/~ where j are the
decomposition levels, the approximate 100(1 — 2p)%
confidence interval is given by




Appendix B. wavCovariance 113

nik () nok(n)

Qn(1-p) " Qn(p)

where Q. (p) is the p x 100 percentage point for a x2
distribution.

Required Arguments

variance A vector containing the block-averaged unbiased wavelet
variance estimates. '

edof A vector containing the equivalent degrees of freedom
estimates. See wavEDOF for details.

Optional Arguments

“probability The probability desired for the confidence intervals.
Supported probabilities are 0.005, .025, .05, .95, .975,
and .995. Default: 0.95.

Value A matrix of size 2 x J. The rows of the matrix contain
(in order) the low and high confidence interval limits
for levels 1,...,J.

References 1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

See Also wavVariance, wavEDOF

Example

## first calculate the EDOF for the ocean series
edof <- wavEDOF( ocean )

## calculate the 95% confidence
## intervals for EDOF mode 1
wavConfidencelLimits( edof$variance.unbiased, edof$EDOF1 )

wavCovariance Discrete wavelet covariance estimation.
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Usage wavCovariance( x, y, wavelet = ”s8”, n.levels = 4, lag
= ¢(10,20,30,40) )

Description Calculates the time (in)dependent, (un)biased, (un)lagged
discrete wavelet covariance of two time series using ei-
ther DWT or MODWT wavelet transform coefficients.

Required Arguments

X A vector containing a uniformly-sampled real-valued
time series.

y A vector containing a uniformly-sampled real-valued
time series.

Optional Arguments

transform A character string denoting the type of wavelet trans-
form: “modwt” or “dwt”. Default: “modwt”.

wavelet A character string denoting the filter type. See wav-
Daubechies for details. Default: “s8”.

n.levels The number of decomposition levels. Default: the max-
imum level at which there exists at least one interior
wavelet coefficient.

lag an integer denoting the time lag to be used on the
series (represented by) x or y when calculating the co-
variance estimates at a given scale. The lag is used
to study the covariance between wavelet subband pro-
cesses whose events are assumed to be correlated at
different times. The wavelet coefficients for y are cir-
cularly shifted by lag and the product of these shifted
coefficients with the wavelet coefficients of x at the
corresponding scale are used to form the wavelet co-
variance estimates. If lag is a vector, the j’th level y
wavelet coefficients are lagged by the j’'th element of
lag. If the number of elements in lag is less than the
number of wavelet decomposition scales, the highest
scale lag is repeated for the remaining scales. Finally,
lag may contain positive or negative integers, with neg-
ative lags representing an advance (or circular permu-
tation to the left) of the wavelet coefficients. The lag
used. Default: 0.
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sampling.interval
The sampling interval of the time series. Default: 1.

Value An object of class WaveletCovariance.

References 1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

See Also wavVariance.

Example

## create second data set, with the first
## being the sunspots series
revsun <- rev(sunspots)

## calculate the wavelet covariance of the sunspots
## series with a reversed sunspots series
xcov <- wavCovariance(sunspots, revsun)

## plot the results
plot (xcov)

## plot the wavelet covariance coefficients

## shifted for approximate zero phase to align
## them with events in the original time series
plot(xcov, shift = T)

## perform a lagged wavelet covariance estimation
## using the same lag for all scales
xcov <- wavCovariance(sunspots, revsun, lag = 20)

## perform a lagged wavelet covariance estimation
## using different lags for for different scales
xcov <- wavCovariance(sunspots, revsun,

+ lag = c(20, 30, 40))

print (xcov$lag)
wavDTWT.2d The two-dimensional dual tree discrete wavelet
transform (DTWT2d).
Usage wavDTWT.2d( x, n.levels = 3, biorthogonal = “nearsyma”
gshift = “a”
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Description The two-dimensional version of the dual-tree complex
» wavelet transform (DTWT) applies the DTWT to each
column and to each row of the input matrix (e.g., an

image).

Required Arguments

x A numeric matrix having an even number of rows and
columns.

Optional Arguments

n.levels The number of decomposition levels. Default: min(logb(dim(x),
base = 2)).
biorthogonal A character string denoting the level one biorthogonal

filter type. Supported types are “antonini”, “legall”,
“pearsyma”, and “nearsymb”. Default: “nearsyma”.

gshift A character string denoting the Q-Shift filter type used
for levels greater than one. Supported types are “a”,
“p”, “c”, and “d”. Default: “a”.

Value An object of class WaveletDualTree2d.

References 1. N. G. Kingsbury, The dual-tree complez wavelet
transform: a new efficient tool for image restora-
tion and enhancement, Proc. EUSIPCO 98, Rhodes,
Sept. 1998.

2. N. G. Kingsbury, Image processing with complez
wavelets, Phil. Trans. Royal Society London A,
Sept. 1999, pp. 2543-2560.

3. N. G. Kingsbury, A dual-tree complez wavelet
transform with improved orthogonality and sym-
metry properties, Proc. IEEE Conf. on Image Pro-
cessing, Vancouver, Sept. 11-13, 2000, Paper 1429.

4. 1. Daubechies, Orthonormal Bases of Compactly
Supported Wavelets, Communications on Pure and,
Applied Mathematics, 41, 909-96.

See Also wavDTWTPFilters, reconstruct, wavDTWT.

Example
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## create an image
img <- make.image("flower", 128)

## calculate DTWT coefficients of an image x.img

## through level 3

y <- wavDTWT.2d(img, n.levels = 3, bior = "nearsymb",
+ gshift = "b", title.data = "Flower" )

## display results
print(y)

## plot complex magnitudes (decibels) of wavelet
## coefficients for all six angular orientationms
## at level 1

plot(y, level=1)

## same plot, but showing actual magnitudes, not decibels
plot(y, decibels=F, level = 1)

## same plot, but with all magnitudes less than 60
## percent of maximum values set to zero
plot(y, decibels=F, level = 1, threshold=0.60)

## same type of plot, but showing an enlarged view of
## only the +15 deg plot
plot(y, decibels=F, level = 1, angle=15, threshold=0.60)

## same as above, but showing both the +15 deg and
## -15 deg plots

plot(y, decibels=F, level = 1, angle=c(15,-15),

+ threshold=0.60)

## reconstruct image from its 2D DTWT
img.recon <- reconstruct(y)

## verify reconstruction
vecnorm(img.recon - img)/vecnorm(img)

wavDTWTFilters Dual tree discrete wavelet transform filter gen-
eration.

Usage wavDTWTFilters( bio = “nearsyma”, gshift = “a”
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Description

Calculates the wavelet and scaling filter coefficients for
a dual tree wavelet transform (DTWT). There are two
sets that are specified: (1) a biorthogonal set used only
for level one of the DTWT and (2) an even-length,
quarter-sample shift (Q-Shift) filter set used for de-
composition levels greater than one.

Optional Arguments

biorthogonal

gshift

Value

References

See Also

Example

A character string denoting the level one biorthogonal
filter type. Supported types are “antonini”, “legall”,
“pearsyma”, and “nearsymb”. Default: “nearsyma”.

A character string denoting the Q-Shift filter type used
({981

for levels greater than one. Supported types are “a”,
“b”?, “c”, and “d”. Default: “a”.

An object of class WaveletKingsbury.

1. N. G. Kingsbury, The dual-tree compler wavelet
transform: a new efficient tool for image restora-
tion and enhancement, Proc. EUSIPCO 98, Rhodes,
Sept. 1998.

2. N. G. Kingsbury, Image processing with complex
wavelets, Phil. Trans. Royal Society London A,
Sept. 1999, pp. 2543-2560.

3. N. G. Kingsbury, A dual-tree complex wavelet
transform with improved orthogonality and sym-
metry properties, Proc. IEEE Conf. on Image Pro-
cessing, Vancouver, Sept. 11-13, 2000, Paper 1429.

4. 1. Daubechies, Orthonormal Bases of Compactly
Supported Wavelets, Communications on Pure and,
Applied Mathematics, 41, 909-96.

wavDTWT, wavDTWT.2d.

## calculate DTWT filters
temp <- wavDTWTFilters(bior = "nearsyma", gqshift = "p")

## plot impulse responses of filters used in the
## forward DTWT

plot(temp)
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## plot impulse responses of filters used in the
## inverse DTWT
plot(temp, forward = F)

## plot the squared gain response of the forward filters
plot(temp, freq = T)

## summarize the filter set

summary (temp)
wavDTWT The dual tree discrete wavelet transform (DTWT).
Usage wavDTWT( x, n.levels = 3, biorthogonal = “nearsyma”,
gshift = “a” )
Description The Dual-Tree Complex Wavelet Transform (DTWT)

is a recent development in wavelet theory due to Pro-
fessor Nick Kingsbury at Cambridge University. The
research that resulted in the DTWT was motivated
by the quest for a transform that would have several
desirable properties:

Invertibility (“perfect” reconstruction)

Shift invariance

Directional selectivity in the two-dimensional trans-
form

e Numerical stability

Kingsbury’s transform retains perfect reconstruction,
achieves a good (but approximate) degree of shift in-
variance, has good directional selectivity, and is nu-
merically stable. These features do come with a mod-
est degree of redundancy (a factor of two in one dimen-
sion, or four in two dimensions), but this is consider-
ably less than the redundancy of the non-decimated
wavelet transform.

The transform is evaluated via two trees of filters that
are designed to have the character of "real” and ”imag-
inary” parts of an overall complex wavelet transform.
We emphasize, however, that this is accomplished us-
ing purely real filters. Here, the "complex” nature of
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the result must be understood in the analytic signal
sense. Thus, the mother wavelets associated with each
tree are discrete versions of Hilbert transforms of one
another. Equivalently, the lowpass filters of one tree
interpolate midway between the lowpass filters of the
second tree. While no complex numbers are involved
in the evaluation of the transforms themselves, the re-
sults obtained from the two trees, “Tree A” and “Tree
B,” are interpreted as (Tree A) + j (Tree B).

The wavDTWT function calculates the wavelet coef-
ficients and scaling coefficients for a given filter type.
Two sets of filters must be specified: (1) a biorthogonal
set used only for level one of the DTWT and (2) an
even-length, quarter-sample shift (Q-Shift) filter set
used for decomposition levels greater than one.

Required Arguments

X A vector containing a uniformly-sampled real-valued
time series.

Optional Arguments

n.levels The number of decomposition levels. Default: the max-
imum level at which there exists at least one interior
wavelet coefficient.

biorthogonal A character string denoting the level one biorthogonal
filter type. Supported types are “antonini”, “legall”,
“nearsyma”, and “nearsymb”. Default: “nearsyma”.

qshift A character string denoting the Q-Shift filter type used
for levels greater than one. Supported types are “a”,
“b”, “c”, and “d”. Default: “a”.

Value An object of class WaveletDualTree.

References 1. N. G. Kingsbury, The dual-tree complez wavelet
transform: a new efficient tool for image restora-
tion and enhancement, Proc. EUSIPCO 98, Rhodes,
Sept. 1998.

2. N. G. Kingsbury, Image processing with complez
wavelets, Phil. Trans. Royal Society London A,
Sept. 1999, pp. 2543-2560.
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3. N. G. Kingsbury, A dual-tree complez wavelet
transform with improved orthogonality and sym-
metry properties, Proc. IEEE Conf. on Image Pro-
cessing, Vancouver, Sept. 11-13, 2000, Paper 1429.

4. 1. Daubechies, Orthonormal Bases of Compactly
Supported Wavelets, Communications on Pure and,
Applied Mathematics, 41, 909-96.

See Also wavDTWTFilters, reconstruct, wavDTWT.2d.

Example

## create data vector
x <- make.signal("linchirp", n = 128)

## calculate DTWT coefficients of data vector

## x through level 3

xwav <- wavDTWT(x, n.levels = 3, bior = "nearsymb",
+ gqshift = "b" )

## display results
print (xwav)

## plot wavelet coefficients for all levels for both
## tree A and tree B
plot (xwav)

## plot complex magnitudes of wavelet coefficients
## |treeA + j*treeB|
plot(xwav, mod = T)

## display wavelet detail coefficients, but not the
## scaling coefficients
plot (xwav, plot.scaling = F)

## extract and plot wavelet crystals from Levels 1 and
## 3 only
plot (xwav, levels = c(1,3))

## reconstruct x from its DTWT
x.recon <- reconstruct(xwav)

## evaluate reconstruction
vecnorm(x.recon - x)/vecnorm(x)
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wavDWPT The discrete wavelet packet transform (DWPT).
Usage wavDWPT( x, wavelet = “s8”, n.levels = 3 )
Description Given j,n, t are the decomposition level, oscillation in-

dex, and time index, respectively, the DWPT is given
by

L-1
Wint = z UniWj—1,{ 2 ],2t+1—1 mod N;j_,
=0

fort=0,...,N; — 1 where

w, =19 if n mod 4 =0or 3;
wE=hy, ifnmod4=1or2.

and g and h are the scaling filter and wavelet filter,
respectively. Each filter is of length L. By definition,
Wo,0,t = Xt where {X,} is the original time series.

Required Arguments

A vector containing a uniformly-sampled real-valued
time series.

~ Optional Arguments

wavelet

n.levels

Value

References

See Also

A character string denoting the filter type. See wav-
Daubechies for details. Default: “s8”.

The number of decomposition levels. Default: the max-
imum level at which there exists at least one interior
wavelet coefficient.

An object of class WaveletPacket.

1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

reconstruct, wavDetail, wavMODWPT, wavDWT, wav-
Daubechies, wavMaxLevel, wavShift, wavZeroPhase.



Appendix B. wavDWT 123

Example

## calculate the DWPT of an electrocardiogram

## sequence out to 3 levels using Daubechies least

## asymmetric 8-tap filter set

result <- wavDWPT( ecg, wavelet = "s8", n.levels = 3 )

## plot the transform
plot( result )

## summarize the transform
summary( result )

wavDWT The discrete wavelet transform (DWT).

Usage wavDWT( x, wavelet = “s8”, n.levels = 3 )

Description The discrete wavelet transform using convolution style
filtering and periodic extension.

Let j,t be the decomposition level, and time index,
respectively, and sp; = X, ’ial where X; is a real-
valued uniformly-sampled time series. The jth level
DWT wavelet coefficients (d; ;) and scaling coefficients
(sj,t) are defined as

L-1

Zhlsj—l,Zt-i—l—-l mod Nj_1» t= Ov”-ij -1

=0

L-1

Sit = Z GiSj-12t+1—tmod Nj_1s t=0,...,N; =1
=0

&
il

for j =1,...,J where {i;} and {g;} are the j** level
wavelet and scaling filter, respectively, and N; = N/ 27,
The DWT is a collection of all wavelet coefficients and
the scaling coefficients at the last level: dy,d2,...,ds,8)
where d; and s; denote a collection of wavelet and scal-
ing coefficients, respectively, at level j.

Required Arguments
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x A vector containing a uniformly-sampled real-valued
time series. :

Optional Arguments

wavelet A character string denoting the filter type. See wav-
Daubechies for details. Default: “s8”.

n.levels The number of decomposition levels. Default: the max-
imum level at which there exists at least one interior
wavelet coefficient.

Value An object of class Wavelet Transform.

References 1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

See Also reconstruct, wavDaubechies, wavDetail, wavDWPT,
wavMODWT, wavMODWPT, wavBoundary, wavMaxLevel,
wavIndex, wavShift, wavZeroPhase.

Details This DWT imposes an ad hoc storage sytem for odd
length scaling coefficient crystals: if the length of a
scaling coefficient crystal is odd, the last coefficient
is “stored” in the extra crystal. During reconstruc-
tion, any extra scaling coefficients are returned to their
proper location. Such as system imposes no spurious
energy in the transform coefficients at the cost of a
little bookkeeping.

Example

## calculate the DWT of an electrocardiogram
## sequence out to 4 levels
result <- wavDWT( ecg, wavelet = "s8", n.levels = 4 )

## plot the transform
plot( result )

## plot summary
eda.plot( result )

## summarize the transform
summary( result )



Appendix B. wavDaubechies 125

wavDaubechies Daubechies wavelet and scaling filters.
Usage
Description
~ Optional Arguments
wavelet
normalize
Value
References

wavDaubechies( wavelet = “d6”, normalize = F )

Ingrid Daubechies, a noted pioneer in wavelet theory,
has established a number of wavelet filter types, each
with different mathematical properties. This function
calculates the wavelet and scaling coefficients for a
given filter type. The wavelet coefficients, hx for k =
0,...,L —1 where L is the filter length, are related to
the scaling coefficients through the quadrature mirror
filter (QMF) relation

hi = (-1 Lgr_1k.

A character string denoting the filter type. Supported
types include:

e EXTREMAL PHASE (daublet): “haar”, “d2”,
“d4”, “dﬁ”, “dS”, “le”, “d12”, “d14”, udlﬁ”,
“d18”, «“d420”

e LEAST ASYMMETRIC (symmlet): “s2”,%“s4”,
“86”, “SS”, «510”’ “512”, «514”, “816”, “818”, “g9()”

e BEST LOCALIZED: “12”,“14”, “16”, “114”, “118”,
“190”

e COIFLET: “c6”, “c12”, “c18”, “c24”, “c30”

Default: “s8”.

A logical value. If TRUE, the filters are normalized by
dividing each filter coefficient by the V2 (useful for
maximum overlap wavelet transforms). If FALSE, no
normalization is used. Default: TRUE.

An object of class WaveletDaubechies.

1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.
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9. 1. Daubechies, Orthonormal Bases of Compactly
Supported Wavelets, Communications on Pure and,
Applied Mathematics, 41, 909-96.

See Also wavZeroPhase, wavDWT, wavMODWT, wavDWPT,
wavMODWPT, wavGain.

Details Only relevant for Daubechies filter types. Inconsistent
ordering of the coefficients in Daubechies’ book was
recognized and corrected by Percival (see references).
The “correct” order is given here.

Example

## obtain Daubechies least asymmetric 8-tap filter set
filters <- wavDaubechies( "s8", normalize = T )

## display filter information
print( filters )

## plot the impulse responses
plot( filters, type = "time" )

## plot the gain function
plot( filters, type = "gain" )

## access the filter data
wavelet <- filters$wavelet
scaling <- filters$scaling

wavDetail Calculate the detail sequences for wavelet transform
crystals.

Usage wavDetail( x, level = 3, osc = 2)

Description Let W, , be a discrete wavelet packet crystal where j

is the decomposition level and n is the oscillation in-
dex. The detail sequence D;j , is formed (essentially)
by reconstructing the transform after zeroing out all
other crystals except W ,. Since the DWT and MODWT
are subsets of the DWPT and MODWPT, respec-
tively, their crystals can also be converted to detail
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sequences. The wavDetail function calculates the de-
tails for a DWT, MODWT, DWPT, or MODWPT in
an optimized way.

Required Arguments

X

An object of class Wavelet Transform or WaveletPacket.

Optional Arguments

level

0osc

Value

References

See Also

Example

An integer (vector) containing the decomposition level(s)
corresponding to the crystal(s) to be decomposed. De-
fault: If the input is of class WaveletTransform, then
the default is to return the details at all levels of the
transform, i.e. a full multiresolution decomposition. If
the input is of class WaveletPacket, then the default is
to return the details of the last (highest) decomposi-
tion level.

An integer (vector) containing the oscillation indices
corresponding to the crystal(s) to be decomposed. De-
fault: the default values are coordinated with that of
the level argument.

An object of class decompose.

1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

reconstruct, mrd, mra, wavDWT, wavDWPT, wav-
MODWT, wavMODWPT.

## calculate various wavelet transforms of the
## first difference of the atomic clock sequence
<- diff( as.vector( atomclock ) )
.dwt <- wavDWT(x, n.levels = 3)

.modwt <- wavMODWT(x, n.levels

x
X
x.dwpt <- wavDWPT(x, n.levels = 3)
X =
x.modwpt <- wavMODWPT(x, n.levels

3)
= 3)

## calculate the wavelet details for all crystals
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## of the DWT

## and MODWT

wavDetail( x.
wavDetail( x.

## calculate

dwt )
modwt )

the wavelet details for the last level

## of the DWPT and MODWPT

wavDetail( x.
wavDetail( x.

## calculate

dwpt )
modwpt )

the wavelet details for all crystals in

## the second level of the DWPT

wavDetail( x.

## calculate

dwpt, level = 2 )

the detail for crystal W(3,2)

## of the MODWPT

wavDetail( x.

## calculate

modwpt, level = 3, osc = 2 )

the detail for crystal W(3,2)

## of the DWPT

wavDetail( x.

dwpt, level = 3, osc = 2 )

## plot the wavelet details for levels
## 1 and 3 of the MODWT
plot( wavDetail( x.modwt, level = c(1,3) ) )

wavEDOF Equivalent degrees of freedom (EDOF) estimates for a
chi-squared distribution.

Usage wavEDOF (x, wavelet = ”d6”, levels = 3:5)

Description Let X be a collection of M uncorrelated zero mean

Gaussian random variables (RVs). The sum of the
squares of the RVs in X will obey a scaled chi-square
distribution with M degrees of freedom (DOF). If,
however, the original Gaussian RVs are (partially) cor-
related, we can approximate the distribution of the
sum of the squares of (correlated Gaussian) RVs us-
ing a scaled chi-square distribution with the DOF ad-
justed for the correlation in the RVs. These adjusted
DOF estimates are known as the equivalent degrees of
freedom (EDOF). In the context of unbiased wavelet
variance analysis, the EDOF can be used to estimate
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confidence intervals that are guaranteed to have non-
negative bounds.

This program calculates three estimates of the EDOF
for each level of a discrete wavelet transform. The
three modes are described as follows for the MODWT
of an an input sequence {X;}o!:

1. EDOF 4, (large sample approximation that re-
quires an SDF estimation via wavelet coefficients):

. _ M;(350)°
A;

H

where §; , is the autocovariance sequence defined
by

M;—-1
Gz 3 O 0 <lr < My -1
HhT = M. '3,t 1 = = J )
t=0 )

Jit+iT
f il

&g’? ") are the M; jt* level interior MODWT wavelet
coefficients, and fij is defined as

(830) , o~
A; = g" + 3 (ir)?
=1

2. EDOF 17, (large sample approximation where
the SDF is known a priori):

2
Z(ZL‘J?‘”’“ cj(fk))
TLLDE )

N

=

where fx = k/M; and

c; = HP(£)Sx (f)

is the product of Daubechies wavelet filter squared
gain function and the spectral density function of
X:.

3. EDOF 7 (large sample approximation using a
band-pass approximation for the SDF):

fi3 = max{M;/2’,1}.
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Required Arguments

x An object of class WaveletTransform or a vector con-
taining a uniformly-sampled real-valued time series.

Optional Arguments

wavelet A character string denoting the filter type. See wav-
Daubechies for details. Only used if input x is a time
series. Default: “s8”.

levels A vector containing the decomposition levels. Default:
when x is of class Wavelet Transform then levels = 1:x.n_level,
otherwise levels = 1:J where J is the maximum wavelet
transform level in which there exists at least one inte-
rior wavelet coefficient.

sdf A vector containing a discretized approximation of the
process spectral density function (SDF). The coeffi-
cients of this argument should correspond exactly with
the normalized Fourier frequencies

f=[0,1/P,2/P,3/P,...,(M—1)/P]

where P = 2% (M — 1) and M is the number of points
in the SDF vector. For example, if the sdf vector con-
tains five elements, the corresponding frequencies will
be f = [0,1/8,1/4,3/8,1/2]. This argument is used
only for calculating mode 2 EDOF. If the EDOF mode
2 estimates are not desired, send in an empty vector
for this argument and the EDOF mode 2 and corre-
sponding confidence intervals will not be calculated.
Default: empty vector.

Value A list containing the EDOF estimates for modes 1, 2
and 3 as well as the block-dependent unbiased wavelet
variance estimates.

References 1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

See Also wavVariance.

Example
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## calculate the EDOF estimates for the ocean series
wavEDOF( ocean )

compositions are nominally associated with approxi-
mate bandpass filters. Specifically, at decomposition
| level j, the wavelet transform coefficients correspond
| approximately to the normalized frequency range of
[1/291,1/27]. The square of the wavelet coefficients
are used to form the so-called wavelet variance (or
wavelet spectrum) which is seen as a regularization of
the SDF. Under an assumed FD process, this function
estimates the mid-octave SDF values. The estimates
are calculated assuming that the wavelet transform
filters form perfect (rectangular) passbands. Decom-
position levels 1 and 2 are calculated using a second
order Taylor series expansion about the mid-octave
frequencies while, for levels greater than 2, a small an-
gle approximation ( sin(rf) ~ mf ) is used to develop
a closed form solution which is a function of FD model
parameters as well as the mid-octave frequencies.

wavFDPBand Mid-octave spectral density function (SDF) estima-
‘ tion.
‘ Usage wavFDPBand( levels = 1:5 , delta = 0.25, method =
| "bandpass” )
: Description The wavelet and scaling filters used for wavelet de-
\
|

Optional Arguments

levels A vector containing the decomposition levels. If n.sample <
0, then the levels may be given in any order and lev-
els may be skipped. If, however, n.sample > 0, then
levels must contain the values 1,2,3,...,J where J is
the maximum wavelet transform decomposition level.
Default: 1:5.

delta The fractional difference parameter. If the scaling band
estimates are desired (prompted by setting n.sample >
0), then delta must be less than 0.5 since the formulae
for calculating the scaling band estimates implicitly
assume stationarity. Default: 0.4.
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n.sample The number of samples in the time series. Although
no time series is actually passed to the wavFDPBand
function, the n.sample argument is used in estimating
the mid-octave SDF value over the band of frequencies
which are nominally associated with the scaling filter
in a wavelet transform. If n.sample > 0, this function
will append the estimate of the average SDF value
over the scaling band to the wavelet octave estimates.
If n.sample < 0, only the wavelet octave estimates are
returned. Default: 1024.

scaling A logical flag. If TRUE, the mid-octave value of the
FDP SDF octave corresponding to the scaling coeffi-
cients is also returned. Default: TRUE.

method A character string denoting the method to be used for
estimating the average spectral density values at the
center frequency (on a log scale) of each DWT octave.
The choices are

¢ “integration” Numerical integration of the stan-
dard FDP spectral density function.

o “bandpass” A small angle approximation to the
standard FDP spectral desnity functions for de-
composition levels j > 3 in combination with a
Taylor series approximation for levels j = 1,2.

Default: “bandpass”.

Value A vector containing the mid-octave SDF estimates for
an FD process.

References 1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000, 343-54.

See Also wavFDPBlock, wavFDPTime, wavVariance, wavEFDPSDF.

Details Estimates are made for the scaling filter band based
upon an implicit assumption that the FD process is
stationary (6 < 1/2).

Example

## calculate the mid-octave SDF values for
## an FD process over various wavelet bands
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wavFDPBand( levels = c(1, 3, 5:7), delta = 0.45,
+ scaling = F )

wavFDPBlock

Block-dependent estimation of fractionally differ-
enced (FD) model parameters.

Usage

Description

wavFDPBIlock( x, levels = 2:6, wavelet = “s8”, + es-
timator = “mle”, boundary = “stationary” )

A discrete wavelet transform is used to estimate the
FD parameter, the variance of the FD parameter and
the innovations variance for a given time series. Both a
maximum likelihood estimation (MLE) and weighted
least squares estimation (WLSE) scheme are available.
If an MLE scheme is chosen, then the DWT is used for
its ability to de-correlate long-memory processes. If a
WLSE scheme is chosen, then the MODWT is used
for its known statistical wavelet variance properties.

Required Arguments

A vector containing a uniformly-sampled real-valued
time series.

Optional Arguments

levels

filter

estimator

boundary

A vector containing the decomposition levels. The lev-
els may be given in any order but must be positive.
Default: 1:J where J is the maximum wavelet decom-
position level at which there exists at least one interior
wavelet coefficient.

A character string denoting the filter type. See wav-
Daubechies for details. Default: “s8”.

A character string denoting the estimation method.
Use “wlse” for a weighted least squares estimate and
“mle” for a maximum likelihood estimate. Default:
“wlse”.

A character string representing the different methods
by which boundary wavelet coefficients and scaling co-
efficients are handled in calculating the FD model pa-
rameters. The options for this argument are dependent
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edof

sdf

delta_range

upon the estimator argument. For the MLE case, the
boundary options are:

o “stationary” Under a stationary FD process
model, boundary wavelet and scaling coefficients
are used in estimating the FD model parameters.

e “nonstationary” A stationary-nonstationary FD
model assumes that the governing process may
fall into the nonstationary regime and, accord-
ingly, the boundary wavelet coefficients and scal-
ing coefficients are excluded in estimating the FD
model parameters.

For the WLSE case, the boundary options are:

e “biased” Boundary wavelet coefficients are in-
cluded in the estimate.

e “unbiased” Boundary wavelet coefficients are
excluded in the estimate.

The scaling coefficients are (always) excluded in weighted
least squares estimates of FD model parameters. De-
fault: “unbiased”.

The mode by which the equivalent degrees of freedom
are calculated. This argument is limited to 1,2, or 3
and is used only for the WLSE scheme. See wavEDOF
for details. Default: 1.

A vector containing a discretized approximation of the
process spectral density function (SDF). The coeffi-
cients of this argument should correspond exactly with
the normalized Fourier frequencies

f=1[0,1/P,2/P,3/P,...,(M — 1)/ P]

where P = 2%(M —1) and M is the number of points in
the SDF vector. For example, if the sdf vector contains
five elements, the corresponding frequencies will be
f=10,1/8,1/4,3/8,1/2]. This argument is used only
for the WLSE scheme when calculating EDOF mode
2 estimates. Default: empty vector.

A two-element vector containing the search range for
the FD parameter. Typically, the range [—10;10] is
suitable for all physical systems. Default: ¢(-10 10).
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Value An object of class WaveletFDP.

References 1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000, 340-92.

2. W. Constantine, D. B. Percival and P. G. Rein-
hall, Inertial Range Determination for Aerother-
mal Turbulence Using Fractionally Differenced Pro-
cesses and Wavelets, Physical Review E, 2001,
64(036301), 12 pages.

See Also wavFDPTime, wavFDPSimulate, wavFDPSimulateWeights,
wavFDPBand, wavFDPSDF.

Details e When estimator = “mle" and boundary = “sta-
tionary”, the levels vector is forced to take on val-
ues 1,2, ..., J where J is the maximum number of
levels in a full DWT. This is done because (in this
case) the scaling coefficient and all wavelet coeffi-
cients are used to form the FD model parameter
estimates.

e In using the WLSE scheme it is recommended
that only the unbiased estimator be used since
the confidence intervals for the biased estimator
have not been sufficiently studied.

Example

## perform a block-averaged MLE of FD

## parameters for an FD( 0.45, 1 ) realization

## over levels 1 through 6 using a

## stationary-nonstationary FD model and

## Daubechies least asymmetric 8-tap filters

wavFDPBlock( fdp045, levels = 1:6, wavelet = "s8",
est = "mle", boundary = "nonstationary" )

wavFDPSDF Spectral desnity function for a fractionally differ-
enced process.

Usage wavFDPSDF( {, delta = 0.45, variance = 1)
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Description

wavFDPSDF

Returns the spectral density function (SDF) for a frac-
tionally differenced (FD) process. Given a unit sam-
pling rate, the SDF for an FD proces is

2
O¢

|2sin(7 f)[24°

where o2 is the innovations variance, ¢ is the FD pa-
rameter, and f is the normalized frequency for |f| <
1/2.

Required Arguments

A numeric value representing normalized frequency
where the sampling interval is unity.

Optional Arguments

delta

response

variance

Value

References

See Also

Example

The FD parameter. Default: 0.45.

A list containing the objects frequency and sqrgain
which represent, respectively, a numeric normalized
frequency vector corresponding to a wavelet squared
gain response at a particular wavelet decomposition
level. This argument typically will not be set by the
user. Rather, it is used internally by FD process max-
imum likelihood estimators. Default: NULL.

The FD innovations variance. Default: 1.

The SDF values corresponding to the FD model pa-
rameters.

1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

wavFDPBand, wavFDPBlock, wavFDPTime.

## create a normalized frequency vector

f <- seq(from

= 1e-2, to = 1/2, length = 100)

## calculate the FDP SDF for delta = 0.45
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## and unit innovations variance
S <~ wavFDPSDF(f, delta = 0.45, variance = 1)

## plot the results
plot(f, S,log = "xy", xlab = "Frequency",
+ ylab = "SDF of FDP(0.45, n")

wavFDPSimulateWeights ‘Generate the weights for a time-
varying FD process simulation.

Usage wavFDPSimulateWeights( delta = ¢(0.2, 0.4), innova-
tion = rep(1,2) )

Description Time varying fractionally differenced (FD) process re-
alizations are generated by cumulatively summing over
the inner product of a Gaussian pseudo-random noise
sequence (with zero mean and unit variance) and a
series of weights that are dependent upon both the
FD parameter. and innovations variance at a partic-
ular time. This function generates these weights and
returns them in a matrix.

Required Arguments

delta A vector containing time-varying FD parameters.

Optional Arguments

innovations.variance
A vector containing time-varying FD innovations vari-
ances. Default: a vector the same length as delta and
filled with ones.

Value A lower triangular matrix containing the weights needed
to simulate a time-varying FD process realization cor-
responding to the input FD model parameters. The
weights needed to simulate the t** point of a time-
varying FD process realization are located in result[t,1:t].

References 1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.
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2. D. B. Percival and W.L.B. Constantine, Ezact
Simulations of Time- Varying Fractionally Differ-
enced Processes, submitted to Journal of Compu-
tational and Graphical Statistics, 2002.

See Also wavFDPSimulate, wavFDPBlock, wavFDPTime.

Example

## create a time-varying FD parameter,
## linearly varying from white to pink noise
delta <- seq( 0, 0.5, by = 0.02)

## set the innovations variance to unity
innovation <- rep(1, length( delta ) )

## creates the weights needed to simulate a

## time-varying FD process

result <- wavFDPSimulateWeights( delta = delta,
+ innovation = innovation ) '

wavFDPSimulate Simulation of an FD process with time varying
model parameters.

Usage wavFDPSimulate( delta = ¢(0.2, 0.4), innovation =
rep(1,2) )
Description Creates a realization of a time-varying fractionally dif-

ferenced (FD) process with a given vector of FD pa-
rameters and corresponding vector of innovations vari-
ances.

Required Arguments

delta A vector containing time-varying FD parameters.

Optional Arguments

innovations.variance
A vector containing (time-varying) FD innovations vari-
ances. Default: a vector the same length as delta and
filled with ones.
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Value A vector containing a (time-varying) FD process real-
ization corresponding to the input FD model param-
eters.

References 1. D. B. Percival and A. T. Walden, Wavelet Meth-

ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

2. D. B. Percival and W.L.B. Constantine, Eract
Simulations of Time-Varying Fractionally Differ-
enced Processes, submitted to Journal of Compu-
tational and Graphical Statistics, 2002.

See Also wavFDPSimulateWeights, wavFDPBlock, wavFDPTime.

 Example

## create a time-varying FD parameter,
## linearly varying from white to pink noise
delta <- seq( 0, 0.5, by = 0.02 )

## set the innovations variance to unity
innovation <- rep(1, length( delta ) )

## simulate a time-varying FD process
result <- wavFDPSimulate( delta = delta,
+ innovation = innovation )

wavFDPTime Block-independent (instantaneous) estimation of
fractionally differenced (FD) model parameters.

Usage wavFDPTime( x, levels = 2:6, wavelet = “s8”, esti-
mator = “Ise”, biased = F, dof = 0)

Description The MODWT is used to calculate instantaneous es-
timates of the FD parameter, the variance of the FD
parameter and the innovations variance. The user can
select between maximum likelihood and least squares
estimators. Localized estimates may also be formed
by using multiple chi-squared degrees of freedom in
estimating the FD model parameters.

Required Arguments
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X

A vector containing a uniformly-sampled real-valued
time series.

Optional Arguments

levels

wavelet

estimator

biased

dof.order

delta.range

Value
References

A vector containing the decomposition levels. The lev-
els may be given in any order but must be positive.
Default: 1:J where J is the maximum wavelet decom-
position level at which there exists at least one interior
wavelet coefficient.

A character string denoting the filter type. See wav-
Daubechies for details. Default: “s8”.

A character string denoting the estimation method.
Use “Ise” for least squares estimates and “mle” for
maximum likelihood estimates. Default: “Ise”.

A logical flag used to choose between denoting bi-
ased or unbiased estimates. Biased estimates are those
which use all available levels in calculating the FD
model parameters. Unbiased estimates are calculated
with only those wavelet coefficients not subject to cir-
cular filter operations, i.e. only the interior wavelet
coefficients are used in calculating unbiased estimates.
Default: TRUE.

The degree of freedom (DOF) order. The number of
chi-square DOFs used in estimating the FD param-
eters is equal to 2 x dof.order + 1 where necessarily
dof.order > 0. As the order increases, the estimates
will become smoother but less localized in time. De-
fault: 0.

A two-element vector containing the search range for
the FD parameter. Typically, the range [-10,10] is
suitable for all physical systems. Default: c(-10, 10).

An object of class WaveletFDP.

1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000, 340-92.

2. W. Constantine, D. B. Percival and P. G. Rein-
hall, Inertial Range Determination for Aerother-
mal Turbulence Using Fractionally Differenced Pro-
cesses and Wavelets, Physical Review E, 2001,
64(036301), 12 pages.
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wavFDPBand, wavFDPSDF.

Example

## perform a unbiased instantaneous LSE of FD parameters
## for an FD(0.45, 1) realization over levels 1 through 6
## using Daubechies least asymmetric 8-tap filters.

## Use a zeroth order DOF (equivalent to 1 chi-square DOF)
result <- wavFDPTime( £dp045, levels = 1:6,

+ wavelet = "s8", est = "lse", biased = F )

## display the results
print( result )

## plot the results
plot( result )

## plot the results with the confidence intervals
## centered about the mean (known) value of the
## the FD parameter

plot( result, mean.delta = 0.45 )

|
See Also wavFDPBIlock, wavFDPSimulate, wavFDPSimulateWeights,

wavGain The gain functions for Daubechies wavelet and scaling fil-
ters.
Usage wavGain( wavelet = “s20”, n.levels = 5, normalize =
T)
Description Given {g} and {h} are the impulse responses for the

scaling and wavelet filters, respectively, and Gy (f) and
H,(f) are their corresponding gain functions, then the
gain functions for decomposition level j > 1 are cal-
culated using the recursive algorithm:

H,(f) = Hy(27' /)G (f),

Gi(f) = G127 ))Gj-1(f)-
Optional Arguments

wavelet A character string denoting the filter type. See wav-
Daubechies for details. Default: “s8”.
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n.levels The number of decomposition levels. Default: 5.

\
|
|
\
|
|
|
|
‘ n.fft The number of Fourier coefficients to use in approxi-
mating the gain functions. Default: 1024.
|

normalize A boolean value. If TRUE, the filters are normalized
by dividing each filter coefficient by the V2 (used for
maximal overlap wavelet transforms). If FALSE, no
normalization is used. Default: TRUE.

Value An object of class WaveletGain.

References 1. D. B. Percival and A. T. Walden, Wavelet Meth-
| ods for Time Series Analysis, Cambridge Univer-
| sity Press, 2000.
2. 1. Daubechies, Orthonormal Bases of Compactly
Supported Wavelets, Communications on Pure and,
Applied Mathematics, 41, 909-96.

See Also wavDaubechies.

Example

## approximate the gain functions for the

## normalized Daubechies least

## asymmetric 20-tap filters for levels 1,...,5
## using a 1024 Fourier frequencies

result <- wavGain( wavelet = "s20", n.levels = 5,
+ norm =T )

## plot the results
plot( result )

wavlndex Boundary and interior wavelet coefficient identification.
Usage wavIndex( x )
Description The boundary wavelet and scaling coefficients are those

subject to circular filtering operations. This function
returns the range of indices which span the interior
(or nonboundary) wavelet and scaling coefficients. If
approximate zero phase filters are used in the wavelet
trsnsform input then the shift factors needed to bring
the coefficients to (approximate) zero phase are also
returned.
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Required Arguments

Value

References

See Also

Example

An object of class Wavelet Transform or WaveletBound-
ary.
A list the indices locating the interior and boundary

coefficients as well as the the zero phase shift factors
need for each level of the transform.

1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

wavDWT, wavMODWT, wavBoundary.

## calculate the coefficient indices for a MODWT

## of a simple time series
wavIndex( wavMODWT( 1:8, wavelet = "s8" ) )

wavMODWPT The maximal overlap discrete wavelet packet
transform (MODWPT).
Usage wavMODWPT( x, wavelet = “s8”, n.levels = 3 )

Description

Given j,n,t are the decomposition level, oscillation
index, and time index, respectively, the MODWPT is
given by

Win,t

i

L—1
Z UngW;_; 1n/2),t-25-1 t mod N
=0

The variable L is the length of the filters defined by

Uny = @/V2ifnmod4=0o0r3
= h/V2ifnmod4=1lor2  forl=0,...,L—-1

where g and h are the scaling filter and wavelet filter,
respectively. By definition, Wy 0: = X: where {X:}is
the original time series.
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Required Arguments

A vector containing a uniformly-sampled real-valued
time series.

Optional Arguments

wavelet

n.levels

Value

References

See Also

Example

A character string denoting the filter type. See wav-
Daubechies for details. Default: “s8”.

The number of decomposition levels. Default: the max-
imum level at which there exists at least one interior
wavelet coefficient.

An object of class WaveletPacket.

1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

reconstruct, wavDetail, wavMODWT, wavDWT, wavD-
WPT, wavDaubechies, wavShift, wavZeroPhase.

## calculate the MODWPT of an electrocardiogram

## sequence out to 3 levels using Daubechies least

## asymmetric 8-tap filter set

result <- wavMODWPT( ecg, wavelet = "s8", n.levels = 3)

## plot

the transform

plot( result )

## summarize the transform
summary( result )

wavMODWT The maximal overlap discrete wavelet transform
(MODWT).
Usage wavMODWT( x, wavelet = “s8”, n.levels = 3 )




Description
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Let j,t be the decomposmon level, and time index, re-
spectively, and sp ¢ = X 0 1 where X; is a real-valued
uniformly-sampled time series. The gt level MODWT
wavelet coefficients d,,t and scaling coefficients 3;,; are
defined as

L-1

djt = hlsj—l,t-—25'1 t mod N,
1=0
L-1

St = Q1S5 1 1—2i-1  mod N.
1=0

The variable L is the length of both the scaling fil-
ter (g) and wavelet filter (h). The d;; and §;, are
the wavelet and scaling coefficients, respectively, at
decomposition level j and time index t. The MODWT
is a collection of all wavelet coefficients and the scaling
coefficients at the last level: dl,dz,. dJ,SJ where
d; and §; denote a collection of wavelet and scaling
coefficients, respectively, at level j.

Required Arguments

A vector containing a uniformly-sampled real-valued
time series.

Optional Arguments

wavelet

n.levels

Value

References

See Also

A character string denoting the filter type. See wav-
Daubechies for details. Default: “s8”.

The number of decomposition levels. Default: the max-
imum level at which there exists at least one interior
wavelet coefficient.

An object of class WaveletTransform.

1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

reconstruct, wavDetail, wavMODWPT, wavDaubechies,
wavDWT, wavBoundary, wavIndex, wavShift, wavZe-
roPhase.
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Details

Example

The MODWT is a non-decimated form of the dis-
crete wavelet transform (DWT) having many advan-
tages over the DWT including the ability to handle
arbitrary length sequences and shift invariance (while
the wavDWT function can handle arbitrary length se-
quences, it does so by means of an ad hoc storage
sytem for odd length scaling coefficient crystals. The
MODWT needs no such scheme and is more robust
in this respect). The cost of the MODWT is in its re-
dundancy. For an N point input sequence, there are
N wavelet coefficients per scale. However, the number
of multiplication operations is O(N logy(N)) which is
the same as the fast Fourier transform, and is accept-
ably fast for most situations.

## calculate the MODWT of an electrocardiogram
## sequence out to 4 levels
result <- wavMODWT( ecg, wavelet = "s8", n.levels = 4 )

## plot the transform
plot( result )

## summarize the transform
summary( result )

wavMaxLevel

Calculates the maximum level for a wavelet trans-
form for which there exists at least one interior
wavelet coefficient.

Usage

Description

wavMaxLevel( n.taps = 8, n.sample = 1024, transform
= “modwt” )

Interior wavelet coefficients are those not subject to
circular filter operations. This function calculates the
maximum level for a wavelet transform for which there
exists at least one interior wavelet coefficient.

Optional Arguments

n.taps

The length of the wavelet filter. Default: 8.
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n.sample The number of points in the original time series. De-
fault: 1024.
transform A chcarcter string denoting the transform type. Sup-

ported types are “dwt”, “dwpt”, “modwt”, and “mod-
wpt”. Default: “modwt”.

Value An integer denoting the maximum decomposition level
which contains at least one interior wavelet coefficient.

See Also wavDWT, wavMODWT, wavDWPT, wavMODWPT.

Example

wavMaxLevel( n.taps = 8, n.sample = 1024,

+ transform = "modwt" )
wavRotateVector Circular rotation of a numeric vector.
Usage wavRotateVector(1:5,-2)
Description Rotates (circularly shifts) a numeric vector by the

specified shift.

Required Arguments

X A numeric vector.

shift An integer specifying the amount to shift the numeric
vector. A negative shift implies an advance or circular
permutation to the left.

Value A vector containing the result.
See Also vector
Example

## rotate a vector forwards by 3 places
wavRotateVector( 1:10, 3 )
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wavShift Shifts wavelet transform coefficients for approximate zero
phase alignment.

Usage wavShift( x )

Description If Daubechies symmlets or coiflets are used in a DWT,
MODWT, DWPT, or MODWPT, then the transform
coefficients can be circularly rotated so that they are
approximately aligned (in time) with events of the
original time series. An appropriate shift of the coef-
ficients (generated by approximate linear phase filter
operations) is approximately equivalent to using zero
phase filters in the wavelet transform.

Required Arguments

x An object of class Wavelet Transform,WaveletBoundary
or WaveletPacket.

Value An object of the same class as the input with the trans-
form coefficients adjusted to approximate zero phase
filtering operations.

References 1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

2. 1. Daubechies, Orthonormal Bases of Compactly
Supported Wavelets, Communications on Pure and,
Applied Mathematics, 41, 909-96.

See Also wavZeroPhase, wavDWT, wavMODWT, wavDWPT,
wavMODWPT, wavBoundary.

Details Only relevant for transforms calculated using Daubechies
coiflet and symmlet filters. A second application of
wavShift to the same input object will result in the
original input object, i.e. without any imposed shift
in the transform coefficients.

Example

## plot the zero phase shifted MODWT of a
## linear chirp sequence
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linchirp <- make.signal( "linchirp", n = 1024 )
plot ( wavShift( wavMODWT( linchirp, wavelet = "s8",
+ n.levels =4 ) ) )

wavTitle Extract the name of the data used to generate objects of
various wavelet classes.

Usage wavTitle(x)

Description Wavelet functions store the original name of the data
used to create the output in various locations within
the output object. This function provides a means by
which the user can directly access data name.

Required Arguments

x An object of class dwt,bpt,ptable,mra,mrd,decompose,
wpt,WaveletBoundary,WaveIetHomogeneity,WaveletTransform,
WaveletPacket, WaveletDualTree,signalSeries,WaveletFDP,
or WaveletDualTree2d.

Optional Arguments

default A default chacter string to use if no valid time series
name is found. Default: ”x”.

Value A character string vector containing the result.
See Also wavDWT,wavMODWT,wavDWPT,wavMODWPT.
Example

wavTitle(wavDWT(1:8))
wavTitle(wavShift (wavDWT(1:8)))

wavVarianceHomogeneity Homogeneity test for discrete
wavelet transform crystals.

Usage wavVarianceHomogeneity( x, wavelet = "s8”, n.levels
=14)
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Description

Tests for homogeneity of variance for each scale of
a discrete wavelet transform (DWT) decomposition.
Based on the assumption that the DWT decorrelates
colored noise processes, the interior wavelet coefficients
in a given scale (d”“) can be regarded as a zero mean
Gaussian white noise process. For a homogeneous dis-
tribution of d’"‘ there is an expected linear increase
in the cumulatlve energy as a function of time. The so
called D-statistic denotes the maximum deviation of
the dj-"‘ from a hypothetical linear cumulative energy
trend. This D-statistic is then compared to a table
of critical D-statistics that defines the distribution of
D for various sample sizes. Comparing the D-statistic
of d"“ to the corresponding critical values provides a
means of quantitatively rejecting or accepting the lin-
ear cumulative energy hypothesis. This function per-
forms this test for an ensemble of distribution proba-
bilities.

Required Arguments

An object of class dwt with convolution style filtering,
a corresponding wavebound object, or a numeric vec-
tor. In the latter case, DWT parameters can be passed
to specify the type of wavelet to use and the number
of decomposition levels to perform.

Optional Arguments

wavelet

n.levels

significance

lookup

A character string denoting the filter type. Valid only
for input not of class dwt or wavebound. Default: “s8”,

The number of decomposition levels. Valid only for in-
put not of class dwt or wavebound. Default: the max-
imum decomposition level that contains at least one
interior wavelet coefficient.

A numeric vector of real values in the interval (0,1).
Qualitatively the significance is the fraction of times
that the linear cumulative energy hypothesis is incor-
rectly rejected. It is equal to the difference of the distri-
bution probability (p) and unity. Default: (0.1, 0.05,
0.01).

A logical flag for accessing precalculated critical D-
statistics. The critical D-statistics are calculated for a




n.realization

n.repetition

tolerance

Value

References

See Also

Details
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variety of sample sizes and significances. If lookup is
TRUE, this table is accessed. The table is stored as
the matrix object D.table.critical and is loaded with
S+Wavelets. Missing table values are calculated us-
ing the input arguments: n.realization, n.repetition and
tolerance. Default: TRUE.

An integer specifying the number of realizations to
generate in a Monte Carlo simulation for calculating
the D-statistic(s). This parameter is used either when
lookup is FALSE, or when lookup is TRUE and the ta-
ble is missing values corresponding to the specified
significances. Default: 10000.

an integer specifying the number of Monte Carlo simu-
lations to perform. This parameter is coordinated with
the n.realization parameter. Default: 3.

A numeric real scalar that specifies the amplitude thresh-
old to use in estimating critical D-statistic(s) via the
Inclan-Tiao approximation. Setting this parameter to

a higher value results in a lesser number of summa-
tion terms at the expense of obtaining a less accurate
approximation. Default: 1e-6.

An object of class WaveletHomogeneity.

1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

wavVariance, wavBoundary, wavDWT, D.table.

An Inclan-Tiao approximation of critical D-statistics
is used for sample sizes N > 128 while a Monte Carlo
technique is used for N < 128. For the Monte Carlo
technique, the D-statistic for a Gaussian white noise
sequence of length N is calculated. This process is re-
peated n.realization times, forming a distribution of
the D-statistic. The critical values corresponding to
the significances are calculated a total of n.repetition
times, and averaged to form an approximation to the
D-statistic(s). Because the Monte Carlo study can be
both computationally and memory intensive, it is highly
recommended that lookup be set to TRUE, its default’
value.
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Example

## perform a homogeneity of variance test for a DWT
## decomposition of a long memory process realization
homogeneity <- wavVarianceHomogeneity( fdp045 )

wavVariance

Discrete wavelet variance estimation.

Usage

Description

wavVariance( x, wavelet = “s8”, n.levels = 4 )

The discrete wavelet variance is a useful alternative
to the spectral density function (SDF) and is seen as
an octave-band regularization of the SDF. The wavelet
variance decomposes the variance of certain stochastic
processes on a scale-by-scale basis, and thus, is very
appealing to the analyst studying physical phenomena
which fluctuate both within and across a wide range
of scale.

The MODWT Wavelet Variance

Let N be the the number of samples in a time series
{X:}, L be the length of the wavelet filter, L; = (27 -
1)(L — 1) + 1 be the equivalent filter width at level j
in a MODWT, and 7; = 27! be the scale of the data
at level j for j = 1,...,J. Then the unbiased wavelet
variance is defined as

1 N-1 _
Px(mi) = 51 >, &,

i t=L;—1

where d;; are the MODWT coefficients at level j and
time ¢, and M; = N — L; + 1. The unbiased wavelet
variance estimator avoids so-called boundary coeffi-
cients which are those coefficients subject to circular
filter operations in a discrete wavelet transform. The
biased estimator is defined as

1 N-1 _
V() = N > die
t=0

and includes the effects of the boundary coefficients.
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The DWT Wavelet Variance

The DWT can also be used to calculate wavelet vari-
ance estimates, but is not preferred over the MODWT
due to its poor statistical properties. Let N; = [ N/27]
be the number of DWT wavelet coefficients at level j,
and L; = [(L - 2)(1 - 27 7)] be the number of DWT
boundary coefficients at level j (assuming N; > L'j).
Then the DWT version of the unbiased wavelet vari-
ance is defined as

. Nj-1
X = o 6
tL'—l

where d; ; are the DWT coefficients at level j and time
t. Similarly, the DWT version of the biased wavelet
variance is defined as

Required Arguments

A vector containing a uniformly-sampled real-valued
time series.

Optional Arguments

transform

wavelet

n.levels

sdf

A character string denoting the type of wavelet trans-
form: “modwt” or “dwt”. Default: “modwt”.

A character string denoting the filter type. See wav-
Daubechies for details. Default: “s8”.

The number of decomposition levels. Default: the max-
imum level at which there exists at least one interior
wavelet coefficient.

A vector containing a discretized approximation of the
process spectral density function (SDF). The coeffi-
cients of this argument should correspond exactly with
the normalized Fourier frequencies

=1[0,1/P,2/P,3/P,...,(M —1)/P]
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where P = 2% (M —1) and M is the number of points
in the SDF vector. For example, if the sdf vector con-
tains five elements, the corresponding frequencies will
be f = [0,1/8,1/4,3/8,1/2]. This argument is used
only for calculating mode 2 EDOF. If the EDOF mode
2 estimates are not desired, send in an empty vector
for this argument and the EDOF mode 2 and corre-
sponding confidence intervals will not be calculated.
Default: empty vector.

sampling.interval
The sampling interval of the time series. Default: 1.

Value An object of class WaveletVariance.

References 1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

See Also wavCovariance, wavVarianceHomogeneity, wavEDOF.

Example

## create sequence
x <- make.signal( "doppler" )

## perform a time independent wavelet variance analysis
vmod <- wavVariance( x )

## plot the results
plot( vmod, pch = 15, title = "Wavelet Variance of Doppler" )

## calculate wavelet variance estimaates for the ocean series
## and calculate EDOF mode 2 estimates and corresponding

## 95 percent confidence intervals

vocean <- wavVariance( ocean, sdf = oceansdf, wavelet = "d6" )

## summarize the results
plot( vocean, edof = 1:3 )
summary ( vocean )

wavZeroPhase Zero phase shift factors for Daubechies symmlet
and coiflet filters.




Usage

Description
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wavZeroPhase( wavelet = “s8”, levels = 1:3 )

Daubechies coiflet and symmlet filters are approxi-
mate linear phase filters. Consequently, the wavelet
and scaling coefficients of the DWT (using convolution
style filtering), MODWT, DWPT, and MODWPT can
be circularly shifted for approximate zero phase align-
ment with the original time series. This function cal-
culates the circular shift factors needed to bring the
wavelet and scaling coefficients to approximate zero
phase.

Optional Arguments

wavelet

levels

Value

References

See Also

Details

Example

A character string denoting the filter type. See wav-
Daubechies for details. Default: “s8”.

An integer vector containing the decomposition levels.
Default: 1:3.

A list containing the shifts for each crystal of a DWT,
DWPT, MODWT, and MODWPT for the specified
decomposition levels. A negative shift factor implies
an advance (circular shift to the left) of the wavelet
transform crystals.

1. D. B. Percival and A. T. Walden, Wavelet Meth-
ods for Time Series Analysis, Cambridge Univer-
sity Press, 2000.

wavDaubechies, wavDWT, wavMODWT, wavDWPT,
wavMODWPT, wavShift.

Only relevant for DWT, MODWT, DWPT, and MOD-
WPT definitions as given in the above reference and is
valid only for Daubechies symmlet and coiflet filters.

## calculate the zero phase

## shift factors for Daubechies coiflet

## 12-tap filters for levels 2 and 4.
wavZeroPhase( wavelet = "c12", levels = c(2,4) )
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Appendix C

Class Reference

The S+Wavelets module is based on an object-oreiented design, where
outputs from various functions produce which objects belong to a spe-
cific class. Specially designed methods are developed to facilitate the dis-
play, summary, and data access of such output. This chapter describes the
S-+Wavelets classes and their associated methods.

WaveletDaubechies Daubechies filters class.

Summary Operator Methods

print Prints the following information about the wavelet fil-
ters:
e the filter type (e.g. ‘Extremal Phase’)
e the width L of the wavelet and scaling filters

e a logical flag stating the normalization status of
the filters

e the coefficients (i.e., impulse response sequence)
for the filters

plot Plots the coefficients for wavelet and scaling filters
or components of their frequency response functions
(these functions are the discrete Fourier transforms
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of the filter coefficients and are also commonly called
the transfer functions). The plot function takes a sec-
ond argument (type), which should be set to the string
"time", "gain", or "phase” to plot, respectively, the fil-
ter coefficients, the gain function (i.e., the modulus of
the frequency response function) and the phase of the

frequency response function.

Data Access Methods

$ Use to access specific components of the class object.
A list of accessible components can be generated us-
ing the names function. For example, if s8 is an ob-
ject of class WaveletDaubechies, then names(s8) will
give a list of its components. Two of these components
are wavelet and scaling, so s8$wavelet will return the
wavelet filter coefficients, while s88scaling will return
the scaling filter coefficients.

WaveletDualTree Dual tree wavelet transform class.

Summary Operator Methods

print Prints useful information regarding the wavelet trans-
form including:

e Information regarding the filter set.

¢ Number of decomposition levels.

Boundary extension rule.

o Filtering technique (convolution or correlation).

The crystal names.

plot Plots the transform coefficients. The plot function takes
two optional arguments: levels and modulus, which are,
respectively, a vector specifying the decomposition lev-
els and a boolean flag used denote the modulus (ab-
solute value) of the transform coefficients.

Transform Operator Methods

reconstruct Reconstructs the time series via an inverse transform.
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Data Access Methods

[ Access a subset of all crystals contained in a a Wavelet-
DualTree object. For example, to obtain the first and
second level wavelet crystals of a DTWT object X,
use either X[1:2] or X[c(“d1","d2")]. While the for-
mer is more compact, the latter is preferred because
of it leaves no doubt as to which crystals are to be ex-
tracted and does not rely on any particular ordering
of the crystals in the object.

[ Access an individual crystal of a WaveletDualTree ob-
ject. For example, to obtain the second level wavelet
crystal of a DTWT object X, use either X[[2]] or X[[“d2"]].
The result is a vector of transform coefficients. If how-
ever multiple crystals are requested (ala X[[c("d1",“d2")]]
for example), the result is an S-PLUS list containing
the requested crystals.

$ Use to access specific components of the WaveletDu-
alTree object. A list of accessible components can be
generated using the names function. One such com-
ponent is data which contains an S-PLUS list of all
wavelet transform crystals. This gives the user yet an-
other way to access specific transform crystal(s). For
example, if X is an object of class WaveletDualTree,
the d2 crystal can be accessed via X$data$d2.

WaveletDualTree2d Two-dimensional dual tree wavelet trans-
form class.

Summary Operator Methods

print Prints useful information regarding the wavelet trans-
form including:
¢ Information regarding the filter set.
o Number of decomposition levels.
e Boundary extension rule.

o Filtering technique (convolution or correlation).

The crystal names.
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plot

Plots the transform coefficients. The plot function takes
two optional arguments: levels and modulus, which are,
respectively, a vector specifying the decomposition lev-
els and a boolean flag used denote the modulus (ab-
solute value) of the transform coefficients.

Transform Operator Methods

reconstruct

Reconstructs the time series via an inverse transform.

Data Access Methods

[l

Access a subset of all crystals contained in a a Wavelet-
DualTree2d object. For example, to obtain the “d3-s3”
crystal of a 2-D DTWT object X, use X["“d3-s3"].

Access an individual crystal of a WaveletDualTree2d
object. For example, to obtain the “d3-s3” crystal of
a 2-D DTWT object X, use X[[“d3-s3"]].

Use to access specific components of the WaveletDual-
Tree2d object. A list of accessible components can be
generated using the names function.

WaveletFDP

Fractionally differenced process parameter estima-
tion class

Summary Operator Methods

print

Prints useful information regarding the FD model pa-
rameter estimation including:

e A summary of the estimated FD parameters: 4,
var{é}, and oZ.

e The method used to estimate the FD process
model parameters.

e Information regarding the handling of boundary
coeflicients.

e Decomposition levels over which the estimates
were calculated.

e The search range of the FD parameter (6).
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o Information regarding the wavelet transform fil-
ters.

plot Plots the estimates FD parameter d;. For instanta-
neous LSEs, an optional numeric constant can be used
as a second argument to the plot function in order to
display the confidence intervals about a known value
of the FD parameter é. This method is only applicable
for instantaneous estimates produced by the wavFDP-
Time function.

Data Access Methods

$ Use to access specific fields of the class object. A list
of accessible fields can be generated using the names
function.

WaveletGain Wavelet filter frequency reponse class.

»

Summary Operator Methods

print Prints basic filter gain information including:

o Type of wavelet.

¢ Number of decomposition levels for which the
gain functions are calculated.

¢ Number of (Fourier) frequencies used to approx-
imate each gain function.

o The filter normalization state.
plot Plots the dquared gain functions.
Data Access Methods
$ Use to access specific components of the class object.

A list of accessible components can be generated using
the names function.

WaveletKingsbury Kingsbury filters class.
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Summary Operator Methods

print

plot

Prints the following information about the wavelet fil-
ters:

o the filter types for all decomposition levele (e.g.
‘Antonini’ or *Q-Shift A’)

e the width of each filter

Plots the coefficients for wavelet and scaling filters
or components of their frequency response functions
(these functions are the discrete Fourier transforms of
the filter coefficients and are also commonly called the
transfer functions). The plot function takes a second
argument (type), which should be set to the string
"time” or "gain”" to plot, respectively, the filter co-
efficients, the gain function (i.e., the modulus of the
frequency response function).

Data Access Methods

Use to access specific components of the class object.
Class WaveletKingsbury objects contain a list of filters
described below:

¢ biorthogonal: string representing the name of
the biorthogonal filter set

e gshift: string representing the name of the Q-
Shift filter set

e analysis A list of analysis filters, mapped as fol-
lows
— h1: wavelet filter, level 1
— ha: wavelet filter, levels > 1, Tree A
— hb: wavelet filter, levels > 1, Tree B
— gl: scaling filter, level 1
— ga: scaling filter, levels > 1, Tree A
— gb: scaling filter, levels > 1, Tree B
e synthesis A list of synthesis filters, mapped as
follows
— hhl: wavelet filter, level 1
— hha: wavelet filter, level > 1, Tree A
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|

hhb: wavelet filter, level > 1, Tree B
gel: scaling filter, level 1

gga: scaling filter, level > 1, Tree A
ggb: scaling filter, level > 1, Tree B

WaveletPacket

Wavelet packet transform class.

Summary Operator Methods

print

plot

Prints useful information regarding the wavelet packet
transform including:

e Type of wavelet packet transform.

Information regarding the filter set.

Number of decomposition levels.

¢ Boundary extension rule.

Filtering technique (convolution or correlation).

The crystal names.

Plots the transform coefficients.

|
| Transform Operator Methods

mrd
mra

reconstruct

wavShift

wavDetail

Perform a multiresolution decomposition of the data.
Perform a multiresolution analysis of the data.
Reconstructs the time series via an inverse transform.

Circularly shift each crystal to achieve approximate
zero phase. (only suitable for coiflet and symmlet fil-
ters).

Calculate the detail coefficients for specified crystals.

Data Access Methods

Access a subset of all crystals contained in a a Wavelet-
Packet object. For example, to obtain the first and sec-
ond level wavelet crystals of a MODWPT or DWPT
object X, use X[level = 1:2]. Individual crystals may
be accessed as we using the crystal name(s) as an in-
put ala X[c(“w1.0",“w3.1")] for example. In all cases,
the original WaveletPacket object is returned with a
subset of the original crystals.
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Access an individual crystal of a WaveletPacket ob-
ject. For example, to obtain the node correpsonding
to level 2 and oscillation index 3 of a WaveletPacket
object X, use X[[“w3.2"]]. The result is a vector of
transform coefficients. If however multiple crystals are
requested (ala X[[c(“w3.0","w1.1")]] for example), the
result is an S-PLUS list containing the requested crys-
tals. In all cases, only the specified transform coeffi-
cients are returned, i.e. all other components of the
original WaveletPacket object are excluded.

Use to access specific components of the WaveletPacket
object. A list of accessible components can be gener-
ated using the names function. One such component
is data which contains an S-PLUS list of all wavelet
transform crystals. This gives the user yet another way
to access specific transform crystal(s). For example, if
X is an object of class WaveletPacket, the w3.0 crystal
can be accessed via X$data$w3.0.

Wavelet Transform Wavelet transform class.

Summary Operator Methods

print

plot

Prints useful information regarding the wavelet trans-
form including;:

e Type of wavelet transform.

¢ Information regarding the filter set.

¢ Number of decomposition levels.

e Boundary extension rule.

o Filtering technique (convolution or correlation).

e Whether or not the transform coefficients have
been shifted for zero phase (only suitable for coiflet
and symmlet filters).

e The crystal names.

Plots the transform coefficients. If the transform is
shifted for zero phase, the shift factor appears adjacent
to the crystal name. Use the string “energy” as a value
for the optional type argument to display an energy
distribution plot of the crystals.
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Extendend data analysis plot displaying the trans-
form, crystal energy distribution, and coefficient dis-
tribution

Displays a statistical summary of the transform data.

Transform Operator Methods

mrd
mra
reconstruct

wavShift

Perform a multiresolution decomposition of the data.
Perform a multiresolution analysis of the data.
Reconstructs the time series via an inverse transform.

Circularly shift each crystal to achieve approximate
zero phase. (only suitable for coiflet and symmlet fil-
ters).

Data Access Methods

Access a subset of all crystals contained in a a Wavelet-
Transform object. For example, to obtain the first and
second level wavelet crystals of a MODWT or DWT
object X, use either X[1:2] or X[c(“d1",“d2")]. While
the former is more compact, the latter is preferred be-
cause of it leaves no doubt as to which crystals are
to be extracted and does not rely on any particular
ordering of the crystals in the object.

Access an individual crystal of a WaveletTransform ob-
ject. For example, to obtain the second level wavelet
crystal of a MODWT or DWT object X, use either
X[[2]] or X[[“d2"]]. The result is a vector of transform
coefficients. If however multiple crystals are requested
(ala X[[c("d1","d2")]] for example), the result is an
S-PLUS list containing the requested crystals.

Use to access specific components of the Wavelet Trans-
form object. A list of accessible components can be
generated using the names function. One such com-
ponent is data which contains an S-PLUS list of all
wavelet transform crystals. This gives the user yet an-
other way to access specific transform crystal(s). For
example, if X is an object of class Wavelet Transform,
the d2 crystal can be accessed via X$data$d2.
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Wavelet variance class

Summary Operator Methods

print

plot

summary

Prints useful information regarding the wavelet vari-
ance estimates including:

¢ Type of wavelet transform.

Information regarding the filter set.

Number of decomposition levels.

Boundary extension rule.

Filtering technique (convolution or correlation).

The crystal names.

o The scale of each crystal.

Plots the wavelet variance estimates. The plot func-
tion has two optional arguments type and edof. Set
type to “unbiased” or “biased” to plot unbiased or bi-
ased estimates, respectively. To select the EDOF mode
of confidence intervals to be plotted, set edof to a vec-
tor of integers representing the desired EDOF mode
as a third argument (e.g. [1 3] for both EDOF mode
1 and 3).

Displays a statistical summary of the transform data.

Data Access Methods

Use to access specific components of the class object.
A list of accessible components can be generated using
the names function.
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